Metamath Proof Explorer
Table of Contents - 2.1.2. Classes
- Class abstractions
- cab
- df-clab
- eleq1ab
- cleljustab
- abid
- vexwt
- vexw
- vextru
- nfsab1
- hbab1
- hbab1OLD
- hbab
- hbabg
- nfsab
- nfsabg
- Class equality
- df-cleq
- dfcleq
- cvjust
- ax9ALT
- eleq2w2
- eqriv
- eqrdv
- eqrdav
- eqid
- eqidd
- eqeq1d
- eqeq1dALT
- eqeq1
- eqeq1i
- eqcomd
- eqcom
- eqcoms
- eqcomi
- neqcomd
- eqeq2d
- eqeq2
- eqeq2i
- eqeqan12d
- eqeqan12rd
- eqeq12d
- eqeq12
- eqeq12i
- eqeq12OLD
- eqeq12dOLD
- eqeqan12dOLD
- eqeqan12dALT
- eqtr
- eqtr2
- eqtr2OLD
- eqtr3
- eqtr3OLD
- eqtri
- eqtr2i
- eqtr3i
- eqtr4i
- 3eqtri
- 3eqtrri
- 3eqtr2i
- 3eqtr2ri
- 3eqtr3i
- 3eqtr3ri
- 3eqtr4i
- 3eqtr4ri
- eqtrd
- eqtr2d
- eqtr3d
- eqtr4d
- 3eqtrd
- 3eqtrrd
- 3eqtr2d
- 3eqtr2rd
- 3eqtr3d
- 3eqtr3rd
- 3eqtr4d
- 3eqtr4rd
- eqtrid
- eqtr2id
- eqtr3id
- eqtr3di
- eqtrdi
- eqtr2di
- eqtr4di
- eqtr4id
- sylan9eq
- sylan9req
- sylan9eqr
- 3eqtr3g
- 3eqtr3a
- 3eqtr4g
- 3eqtr4a
- eq2tri
- abbi1
- abbidv
- abbii
- abbid
- abbi
- cbvabv
- cbvabw
- cbvabwOLD
- cbvab
- abeq2w
- Class membership
- df-clel
- dfclel
- elex2
- elissetv
- elisset
- eleq1w
- eleq2w
- eleq1d
- eleq2d
- eleq2dALT
- eleq1
- eleq2
- eleq12
- eleq1i
- eleq2i
- eleq12i
- eqneltri
- eleq12d
- eleq1a
- eqeltri
- eqeltrri
- eleqtri
- eleqtrri
- eqeltrd
- eqeltrrd
- eleqtrd
- eleqtrrd
- eqeltrid
- eqeltrrid
- eleqtrid
- eleqtrrid
- eqeltrdi
- eqeltrrdi
- eleqtrdi
- eleqtrrdi
- 3eltr3i
- 3eltr4i
- 3eltr3d
- 3eltr4d
- 3eltr3g
- 3eltr4g
- eleq2s
- eqneltrd
- eqneltrrd
- neleqtrd
- neleqtrrd
- cleqh
- nelneq
- nelneq2
- eqsb1
- clelsb1
- clelsb2
- clelsb2OLD
- hbxfreq
- hblem
- hblemg
- Elementary properties of class abstractions
- abeq2
- abeq1
- abeq2d
- abeq2i
- abeq1i
- abbi2dv
- abbi1dv
- abbi2i
- abbiOLD
- abid1
- abid2
- clelab
- clelabOLD
- clabel
- sbab