Metamath Proof Explorer
Table of Contents - 19.6. Operators on Hilbert spaces
- Operator sum, difference, and scalar multiplication
- df-hosum
- df-homul
- df-hodif
- df-hfsum
- df-hfmul
- hosmval
- hommval
- hodmval
- hfsmval
- hfmmval
- hosval
- homval
- hodval
- hfsval
- hfmval
- hoscl
- homcl
- hodcl
- Zero and identity operators
- df-h0op
- df-iop
- ho0val
- ho0f
- df0op2
- dfiop2
- hoif
- hoival
- hoico1
- hoico2
- Operations on Hilbert space operators
- hoaddcl
- homulcl
- hoeq
- hoeqi
- hoscli
- hodcli
- hocoi
- hococli
- hocofi
- hocofni
- hoaddcli
- hosubcli
- hoaddfni
- hosubfni
- hoaddcomi
- hosubcl
- hoaddcom
- hodsi
- hoaddassi
- hoadd12i
- hoadd32i
- hocadddiri
- hocsubdiri
- ho2coi
- hoaddass
- hoadd32
- hoadd4
- hocsubdir
- hoaddid1i
- hodidi
- ho0coi
- hoid1i
- hoid1ri
- hoaddid1
- hodid
- hon0
- hodseqi
- ho0subi
- honegsubi
- ho0sub
- hosubid1
- honegsub
- homulid2
- homco1
- homulass
- hoadddi
- hoadddir
- homul12
- honegneg
- hosubneg
- hosubdi
- honegdi
- honegsubdi
- honegsubdi2
- hosubsub2
- hosub4
- hosubadd4
- hoaddsubass
- hoaddsub
- hosubsub
- hosubsub4
- ho2times
- hoaddsubassi
- hoaddsubi
- hosd1i
- hosd2i
- hopncani
- honpcani
- hosubeq0i
- honpncani
- ho01i
- ho02i
- hoeq1
- hoeq2
- adjmo
- adjsym
- eigrei
- eigre
- eigposi
- eigorthi
- eigorth
- Linear, continuous, bounded, Hermitian, unitary operators and norms
- df-nmop
- df-cnop
- df-lnop
- df-bdop
- df-unop
- df-hmop
- Theorems about operators and functionals
- nmopval
- elcnop
- ellnop
- lnopf
- elbdop
- bdopln
- bdopf
- nmopsetretALT
- nmopsetretHIL
- nmopsetn0
- nmopxr
- nmoprepnf
- nmopgtmnf
- nmopreltpnf
- nmopre
- elbdop2
- elunop
- elhmop
- hmopf
- hmopex
- nmfnval
- nmfnsetre
- nmfnsetn0
- nmfnxr
- nmfnrepnf
- nlfnval
- elcnfn
- ellnfn
- lnfnf
- dfadj2
- funadj
- dmadjss
- dmadjop
- adjeu
- adjval
- adjval2
- cnvadj
- funcnvadj
- adj1o
- dmadjrn
- eigvecval
- eigvalfval
- specval
- speccl
- hhlnoi
- hhnmoi
- hhbloi
- hh0oi
- hhcno
- hhcnf
- dmadjrnb
- nmoplb
- nmopub
- nmopub2tALT
- nmopub2tHIL
- nmopge0
- nmopgt0
- cnopc
- lnopl
- unop
- unopf1o
- unopnorm
- cnvunop
- unopadj
- unoplin
- counop
- hmop
- hmopre
- nmfnlb
- nmfnleub
- nmfnleub2
- nmfnge0
- elnlfn
- elnlfn2
- cnfnc
- lnfnl
- adjcl
- adj1
- adj2
- adjeq
- adjadj
- adjvalval
- unopadj2
- hmopadj
- hmdmadj
- hmopadj2
- hmoplin
- brafval
- braval
- braadd
- bramul
- brafn
- bralnfn
- bracl
- bra0
- brafnmul
- kbfval
- kbop
- kbval
- kbmul
- kbpj
- eleigvec
- eleigvec2
- eleigveccl
- eigvalval
- eigvalcl
- eigvec1
- eighmre
- eighmorth
- nmopnegi
- lnop0
- lnopmul
- lnopli
- lnopfi
- lnop0i
- lnopaddi
- lnopmuli
- lnopaddmuli
- lnopsubi
- lnopsubmuli
- lnopmulsubi
- homco2
- idunop
- 0cnop
- 0cnfn
- idcnop
- idhmop
- 0hmop
- 0lnop
- 0lnfn
- nmop0
- nmfn0
- hmopbdoptHIL
- hoddii
- hoddi
- nmop0h
- idlnop
- 0bdop
- adj0
- nmlnop0iALT
- nmlnop0iHIL
- nmlnopgt0i
- nmlnop0
- nmlnopne0
- lnopmi
- lnophsi
- lnophdi
- lnopcoi
- lnopco0i
- lnopeq0lem1
- lnopeq0lem2
- lnopeq0i
- lnopeqi
- lnopeq
- lnopunilem1
- lnopunilem2
- lnopunii
- elunop2
- nmopun
- unopbd
- lnophmlem1
- lnophmlem2
- lnophmi
- lnophm
- hmops
- hmopm
- hmopd
- hmopco
- nmbdoplbi
- nmbdoplb
- nmcexi
- nmcopexi
- nmcoplbi
- nmcopex
- nmcoplb
- nmophmi
- bdophmi
- lnconi
- lnopconi
- lnopcon
- lnopcnbd
- lncnopbd
- lncnbd
- lnopcnre
- lnfnli
- lnfnfi
- lnfn0i
- lnfnaddi
- lnfnmuli
- lnfnaddmuli
- lnfnsubi
- lnfn0
- lnfnmul
- nmbdfnlbi
- nmbdfnlb
- nmcfnexi
- nmcfnlbi
- nmcfnex
- nmcfnlb
- lnfnconi
- lnfncon
- lnfncnbd
- imaelshi
- rnelshi
- nlelshi
- nlelchi
- Adjoints (cont.)
- cnlnadjlem1
- cnlnadjlem2
- cnlnadjlem3
- cnlnadjlem4
- cnlnadjlem5
- cnlnadjlem6
- cnlnadjlem7
- cnlnadjlem8
- cnlnadjlem9
- cnlnadji
- cnlnadjeui
- cnlnadjeu
- cnlnadj
- cnlnssadj
- bdopssadj
- bdopadj
- adjbdln
- adjbdlnb
- adjbd1o
- adjlnop
- adjsslnop
- nmopadjlei
- nmopadjlem
- nmopadji
- adjeq0
- adjmul
- adjadd
- nmoptrii
- nmopcoi
- bdophsi
- bdophdi
- bdopcoi
- nmoptri2i
- adjcoi
- nmopcoadji
- nmopcoadj2i
- nmopcoadj0i
- Quantum computation error bound theorem
- unierri
- Dirac bra-ket notation (cont.)
- branmfn
- brabn
- rnbra
- bra11
- bracnln
- cnvbraval
- cnvbracl
- cnvbrabra
- bracnvbra
- bracnlnval
- cnvbramul
- kbass1
- kbass2
- kbass3
- kbass4
- kbass5
- kbass6
- Projectors as operators
- pjhmopi
- pjlnopi
- pjnmopi
- pjbdlni
- pjhmop
- hmopidmchi
- hmopidmpji
- hmopidmch
- hmopidmpj
- pjsdii
- pjddii
- pjsdi2i
- pjcoi
- pjcocli
- pjcohcli
- pjadjcoi
- pjcofni
- pjss1coi
- pjss2coi
- pjssmi
- pjssge0i
- pjdifnormi
- pjnormssi
- pjorthcoi
- pjscji
- pjssumi
- pjssposi
- pjordi
- pjssdif2i
- pjssdif1i
- pjimai
- pjidmcoi
- pjoccoi
- pjtoi
- pjoci
- pjidmco
- dfpjop
- pjhmopidm
- elpjidm
- elpjhmop
- 0leopj
- pjadj2
- pjadj3
- elpjch
- elpjrn
- pjinvari
- pjin1i
- pjin2i
- pjin3i
- pjclem1
- pjclem2
- pjclem3
- pjclem4a
- pjclem4
- pjci
- pjcmul1i
- pjcmul2i
- pjcohocli
- pjadj2coi
- pj2cocli
- pj3lem1
- pj3si
- pj3i
- pj3cor1i
- pjs14i