Metamath Proof Explorer
Table of Contents - 19.7.1. States on a Hilbert lattice
- df-st
- df-hst
- isst
- ishst
- sticl
- stcl
- hstcl
- hst1a
- hstel2
- hstorth
- hstosum
- hstoc
- hstnmoc
- stge0
- stle1
- hstle1
- hst1h
- hst0h
- hstpyth
- hstle
- hstles
- hstoh
- hst0
- sthil
- stj
- sto1i
- sto2i
- stge1i
- stle0i
- stlei
- stlesi
- stji1i
- stm1i
- stm1ri
- stm1addi
- staddi
- stm1add3i
- stadd3i
- st0
- strlem1
- strlem2
- strlem3a
- strlem3
- strlem4
- strlem5
- strlem6
- stri
- strb
- hstrlem2
- hstrlem3a
- hstrlem3
- hstrlem4
- hstrlem5
- hstrlem6
- hstri
- hstrbi
- largei
- jplem1
- jplem2
- jpi