Metamath Proof Explorer
Table of Contents - 20.3.4. Relations and Functions
- Relations - misc additions
- xpdisjres
- opeldifid
- difres
- imadifxp
- relfi
- reldisjun
- 0res
- funresdm1
- fnunres1
- fcoinver
- fcoinvbr
- brabgaf
- brelg
- br8d
- opabdm
- opabrn
- opabssi
- opabid2ss
- ssrelf
- eqrelrd2
- erbr3b
- iunsnima
- iunsnima2
- Functions - misc additions
- ac6sf2
- fnresin
- f1o3d
- eldmne0
- f1rnen
- rinvf1o
- fresf1o
- nfpconfp
- fmptco1f1o
- cofmpt2
- f1mptrn
- dfimafnf
- funimass4f
- elimampt
- suppss2f
- fovcld
- ofrn
- ofrn2
- off2
- ofresid
- fimarab
- unipreima
- opfv
- xppreima
- 2ndimaxp
- djussxp2
- 2ndresdju
- 2ndresdjuf1o
- xppreima2
- abfmpunirn
- rabfmpunirn
- abfmpeld
- abfmpel
- fmptdF
- fmptcof2
- fcomptf
- acunirnmpt
- acunirnmpt2
- acunirnmpt2f
- aciunf1lem
- aciunf1
- ofoprabco
- ofpreima
- ofpreima2
- funcnvmpt
- funcnv5mpt
- funcnv4mpt
- preimane
- fnpreimac
- fgreu
- fcnvgreu
- rnmposs
- mptssALT
- dfcnv2
- fnimatp
- fnunres2
- Operations - misc additions
- mpomptxf
- suppovss
- fvdifsupp
- fmptssfisupp
- suppiniseg
- fsuppinisegfi
- fressupp
- fdifsuppconst
- ressupprn
- supppreima
- fsupprnfi
- Explicit Functions with one or two points as a domain
- cosnopne
- cosnop
- cnvprop
- brprop
- mptprop
- coprprop
- Isomorphisms - misc. add.
- gtiso
- isoun
- Disjointness (additional proof requiring functions)
- disjdsct
- First and second members of an ordered pair - misc additions
- df1stres
- df2ndres
- 1stpreimas
- 1stpreima
- 2ndpreima
- curry2ima
- preiman0
- intimafv
- Supremum - misc additions
- supssd
- infssd
- Finite Sets
- imafi2
- unifi3
- Countable Sets
- snct
- prct
- mpocti
- abrexct
- mptctf
- abrexctf
- padct
- cnvoprabOLD
- f1od2
- fcobij
- fcobijfs
- suppss3
- fsuppcurry1
- fsuppcurry2
- offinsupp1
- ffs2
- ffsrn
- resf1o
- maprnin
- fpwrelmapffslem
- fpwrelmap
- fpwrelmapffs