Metamath Proof Explorer


Theorem trlsegvdeglem1

Description: Lemma for trlsegvdeg . (Contributed by AV, 20-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V=VtxG
trlsegvdeg.i I=iEdgG
trlsegvdeg.f φFunI
trlsegvdeg.n φN0..^F
trlsegvdeg.u φUV
trlsegvdeg.w φFTrailsGP
Assertion trlsegvdeglem1 φPNVPN+1V

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V=VtxG
2 trlsegvdeg.i I=iEdgG
3 trlsegvdeg.f φFunI
4 trlsegvdeg.n φN0..^F
5 trlsegvdeg.u φUV
6 trlsegvdeg.w φFTrailsGP
7 trliswlk FTrailsGPFWalksGP
8 1 wlkpvtx FWalksGPN0FPNV
9 elfzofz N0..^FN0F
10 8 9 impel FWalksGPN0..^FPNV
11 1 wlkpvtx FWalksGPN+10FPN+1V
12 fzofzp1 N0..^FN+10F
13 11 12 impel FWalksGPN0..^FPN+1V
14 10 13 jca FWalksGPN0..^FPNVPN+1V
15 14 ex FWalksGPN0..^FPNVPN+1V
16 6 7 15 3syl φN0..^FPNVPN+1V
17 4 16 mpd φPNVPN+1V