Metamath Proof Explorer


Theorem tsk0

Description: A nonempty Tarski class contains the empty set. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 18-Jun-2013)

Ref Expression
Assertion tsk0 TTarskiTT

Proof

Step Hyp Ref Expression
1 n0 TxxT
2 0ss x
3 tskss TTarskixTxT
4 2 3 mp3an3 TTarskixTT
5 4 expcom xTTTarskiT
6 5 exlimiv xxTTTarskiT
7 1 6 sylbi TTTarskiT
8 7 impcom TTarskiTT