Metamath Proof Explorer


Theorem uneq12i

Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004) (Proof shortened by Eric Schmidt, 26-Jan-2007)

Ref Expression
Hypotheses uneq1i.1 A=B
uneq12i.2 C=D
Assertion uneq12i AC=BD

Proof

Step Hyp Ref Expression
1 uneq1i.1 A=B
2 uneq12i.2 C=D
3 uneq12 A=BC=DAC=BD
4 1 2 3 mp2an AC=BD