Metamath Proof Explorer


Theorem unundi

Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion unundi ABC=ABAC

Proof

Step Hyp Ref Expression
1 unidm AA=A
2 1 uneq1i AABC=ABC
3 un4 AABC=ABAC
4 2 3 eqtr3i ABC=ABAC