Metamath Proof Explorer


Theorem uun121

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun121.1 φφψχ
Assertion uun121 φψχ

Proof

Step Hyp Ref Expression
1 uun121.1 φφψχ
2 anabs5 φφψφψ
3 2 1 sylbir φψχ