Metamath Proof Explorer


Theorem vrmdfval

Description: The canonical injection from the generating set I to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis vrmdfval.u U=varFMndI
Assertion vrmdfval IVU=jI⟨“j”⟩

Proof

Step Hyp Ref Expression
1 vrmdfval.u U=varFMndI
2 df-vrmd varFMnd=iVji⟨“j”⟩
3 mpteq1 i=Iji⟨“j”⟩=jI⟨“j”⟩
4 elex IVIV
5 mptexg IVjI⟨“j”⟩V
6 2 3 4 5 fvmptd3 IVvarFMndI=jI⟨“j”⟩
7 1 6 eqtrid IVU=jI⟨“j”⟩