Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The universal class vtocl3  
				
		 
		
			
		 
		Description:   Implicit substitution of classes for setvar variables.  (Contributed by NM , 3-Jun-1995)   (Proof shortened by Andrew Salmon , 8-Jun-2011)   Avoid
       ax-10  and ax-11  .  (Revised by GG , 20-Aug-2023)   (Proof shortened by Wolf Lammen , 23-Aug-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						vtocl3.1   ⊢   A  ∈  V       
					 
					
						vtocl3.2   ⊢   B  ∈  V       
					 
					
						vtocl3.3   ⊢   C  ∈  V       
					 
					
						vtocl3.4    ⊢    x  =  A    ∧   y  =  B    ∧   z  =  C     →    φ   ↔   ψ         
					 
					
						vtocl3.5   ⊢   φ      
					 
				
					Assertion 
					vtocl3   ⊢   ψ      
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							vtocl3.1  ⊢   A  ∈  V       
						
							2 
								
							 
							vtocl3.2  ⊢   B  ∈  V       
						
							3 
								
							 
							vtocl3.3  ⊢   C  ∈  V       
						
							4 
								
							 
							vtocl3.4   ⊢    x  =  A    ∧   y  =  B    ∧   z  =  C     →    φ   ↔   ψ         
						
							5 
								
							 
							vtocl3.5  ⊢   φ      
						
							6 
								5 
							 
							a1i   ⊢   z  =  C    →   φ        
						
							7 
								4 
							 
							3expa   ⊢     x  =  A    ∧   y  =  B     ∧   z  =  C     →    φ   ↔   ψ         
						
							8 
								7 
							 
							pm5.74da   ⊢    x  =  A    ∧   y  =  B     →     z  =  C    →   φ    ↔    z  =  C    →   ψ          
						
							9 
								1  2  8  6 
							 
							vtocl2   ⊢   z  =  C    →   ψ        
						
							10 
								6  9 
							 
							2thd   ⊢   z  =  C    →    φ   ↔   ψ         
						
							11 
								3  10  5 
							 
							vtocl  ⊢   ψ