Metamath Proof Explorer


Theorem vtocl3gaOLD

Description: Obsolete version of vtocl3ga as of 3-Oct-2024. (Contributed by NM, 20-Aug-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vtocl3gaOLD.1 x=Aφψ
vtocl3gaOLD.2 y=Bψχ
vtocl3gaOLD.3 z=Cχθ
vtocl3gaOLD.4 xDyRzSφ
Assertion vtocl3gaOLD ADBRCSθ

Proof

Step Hyp Ref Expression
1 vtocl3gaOLD.1 x=Aφψ
2 vtocl3gaOLD.2 y=Bψχ
3 vtocl3gaOLD.3 z=Cχθ
4 vtocl3gaOLD.4 xDyRzSφ
5 nfcv _xA
6 nfcv _yA
7 nfcv _zA
8 nfcv _yB
9 nfcv _zB
10 nfcv _zC
11 nfv xψ
12 nfv yχ
13 nfv zθ
14 5 6 7 8 9 10 11 12 13 1 2 3 4 vtocl3gaf ADBRCSθ