Metamath Proof Explorer


Theorem vtoclALT

Description: Alternate proof of vtocl . Shorter but requires more axioms. (Contributed by NM, 30-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vtocl.1 AV
vtocl.2 x=Aφψ
vtocl.3 φ
Assertion vtoclALT ψ

Proof

Step Hyp Ref Expression
1 vtocl.1 AV
2 vtocl.2 x=Aφψ
3 vtocl.3 φ
4 nfv xψ
5 4 1 2 3 vtoclf ψ