Metamath Proof Explorer


Theorem vtoclb

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993)

Ref Expression
Hypotheses vtoclb.1 AV
vtoclb.2 x=Aφχ
vtoclb.3 x=Aψθ
vtoclb.4 φψ
Assertion vtoclb χθ

Proof

Step Hyp Ref Expression
1 vtoclb.1 AV
2 vtoclb.2 x=Aφχ
3 vtoclb.3 x=Aψθ
4 vtoclb.4 φψ
5 2 3 bibi12d x=Aφψχθ
6 1 5 4 vtocl χθ