Metamath Proof Explorer


Theorem vtoclef

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypotheses vtoclef.1 xφ
vtoclef.2 AV
vtoclef.3 x=Aφ
Assertion vtoclef φ

Proof

Step Hyp Ref Expression
1 vtoclef.1 xφ
2 vtoclef.2 AV
3 vtoclef.3 x=Aφ
4 2 isseti xx=A
5 1 3 exlimi xx=Aφ
6 4 5 ax-mp φ