Metamath Proof Explorer


Theorem watvalN

Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses watomfval.a A=AtomsK
watomfval.p P=𝑃K
watomfval.w W=WAtomsK
Assertion watvalN KBDAWD=A𝑃KD

Proof

Step Hyp Ref Expression
1 watomfval.a A=AtomsK
2 watomfval.p P=𝑃K
3 watomfval.w W=WAtomsK
4 1 2 3 watfvalN KBW=dAA𝑃Kd
5 4 fveq1d KBWD=dAA𝑃KdD
6 sneq d=Dd=D
7 6 fveq2d d=D𝑃Kd=𝑃KD
8 7 difeq2d d=DA𝑃Kd=A𝑃KD
9 eqid dAA𝑃Kd=dAA𝑃Kd
10 1 fvexi AV
11 10 difexi A𝑃KDV
12 8 9 11 fvmpt DAdAA𝑃KdD=A𝑃KD
13 5 12 sylan9eq KBDAWD=A𝑃KD