Metamath Proof Explorer


Theorem wl-19.2reqv

Description: Under the assumption -. x = y the reverse direction of 19.2 is provable from Tarski's FOL and ax13v only. Note that in conjunction with 19.2 in fact ( -. x = y -> ( A. x z = y <-> E. x z = y ) ) holds. (Contributed by Wolf Lammen, 17-Apr-2021)

Ref Expression
Assertion wl-19.2reqv ¬ x = y x z = y x z = y

Proof

Step Hyp Ref Expression
1 ax13lem2 ¬ x = y x z = y z = y
2 ax13lem1 ¬ x = y z = y x z = y
3 1 2 syld ¬ x = y x z = y x z = y