Metamath Proof Explorer


Theorem wlkop

Description: A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018) (Revised by AV, 1-Jan-2021)

Ref Expression
Assertion wlkop WWalksGW=1stW2ndW

Proof

Step Hyp Ref Expression
1 relwlk RelWalksG
2 1st2nd RelWalksGWWalksGW=1stW2ndW
3 1 2 mpan WWalksGW=1stW2ndW