Metamath Proof Explorer


Theorem 2exeu

Description: Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2exeuv when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion 2exeu ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) → ∃! 𝑥 ∃! 𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 eumo ( ∃! 𝑥𝑦 𝜑 → ∃* 𝑥𝑦 𝜑 )
2 euex ( ∃! 𝑦 𝜑 → ∃ 𝑦 𝜑 )
3 2 moimi ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑥 ∃! 𝑦 𝜑 )
4 1 3 syl ( ∃! 𝑥𝑦 𝜑 → ∃* 𝑥 ∃! 𝑦 𝜑 )
5 2euex ( ∃! 𝑦𝑥 𝜑 → ∃ 𝑥 ∃! 𝑦 𝜑 )
6 4 5 anim12ci ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) → ( ∃ 𝑥 ∃! 𝑦 𝜑 ∧ ∃* 𝑥 ∃! 𝑦 𝜑 ) )
7 df-eu ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ( ∃ 𝑥 ∃! 𝑦 𝜑 ∧ ∃* 𝑥 ∃! 𝑦 𝜑 ) )
8 6 7 sylibr ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) → ∃! 𝑥 ∃! 𝑦 𝜑 )