Metamath Proof Explorer


Theorem ac10ct

Description: A proof of the well-ordering theorem weth , an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion ac10ct ( ∃ 𝑦 ∈ On 𝐴𝑦 → ∃ 𝑥 𝑥 We 𝐴 )

Proof

Step Hyp Ref Expression
1 vex 𝑦 ∈ V
2 1 brdom ( 𝐴𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝑦 )
3 f1f ( 𝑓 : 𝐴1-1𝑦𝑓 : 𝐴𝑦 )
4 3 frnd ( 𝑓 : 𝐴1-1𝑦 → ran 𝑓𝑦 )
5 onss ( 𝑦 ∈ On → 𝑦 ⊆ On )
6 sstr2 ( ran 𝑓𝑦 → ( 𝑦 ⊆ On → ran 𝑓 ⊆ On ) )
7 4 5 6 syl2im ( 𝑓 : 𝐴1-1𝑦 → ( 𝑦 ∈ On → ran 𝑓 ⊆ On ) )
8 epweon E We On
9 wess ( ran 𝑓 ⊆ On → ( E We On → E We ran 𝑓 ) )
10 7 8 9 syl6mpi ( 𝑓 : 𝐴1-1𝑦 → ( 𝑦 ∈ On → E We ran 𝑓 ) )
11 10 adantl ( ( 𝐴𝑦𝑓 : 𝐴1-1𝑦 ) → ( 𝑦 ∈ On → E We ran 𝑓 ) )
12 f1f1orn ( 𝑓 : 𝐴1-1𝑦𝑓 : 𝐴1-1-onto→ ran 𝑓 )
13 eqid { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } = { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) }
14 13 f1owe ( 𝑓 : 𝐴1-1-onto→ ran 𝑓 → ( E We ran 𝑓 → { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } We 𝐴 ) )
15 12 14 syl ( 𝑓 : 𝐴1-1𝑦 → ( E We ran 𝑓 → { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } We 𝐴 ) )
16 weinxp ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } We 𝐴 ↔ ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 )
17 reldom Rel ≼
18 17 brrelex1i ( 𝐴𝑦𝐴 ∈ V )
19 sqxpexg ( 𝐴 ∈ V → ( 𝐴 × 𝐴 ) ∈ V )
20 incom ( ( 𝐴 × 𝐴 ) ∩ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ) = ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) )
21 inex1g ( ( 𝐴 × 𝐴 ) ∈ V → ( ( 𝐴 × 𝐴 ) ∩ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ) ∈ V )
22 20 21 eqeltrrid ( ( 𝐴 × 𝐴 ) ∈ V → ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V )
23 weeq1 ( 𝑥 = ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑥 We 𝐴 ↔ ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) )
24 23 spcegv ( ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) )
25 18 19 22 24 4syl ( 𝐴𝑦 → ( ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) )
26 16 25 syl5bi ( 𝐴𝑦 → ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ( 𝑓𝑤 ) E ( 𝑓𝑧 ) } We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) )
27 15 26 sylan9r ( ( 𝐴𝑦𝑓 : 𝐴1-1𝑦 ) → ( E We ran 𝑓 → ∃ 𝑥 𝑥 We 𝐴 ) )
28 11 27 syld ( ( 𝐴𝑦𝑓 : 𝐴1-1𝑦 ) → ( 𝑦 ∈ On → ∃ 𝑥 𝑥 We 𝐴 ) )
29 28 impancom ( ( 𝐴𝑦𝑦 ∈ On ) → ( 𝑓 : 𝐴1-1𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) )
30 29 exlimdv ( ( 𝐴𝑦𝑦 ∈ On ) → ( ∃ 𝑓 𝑓 : 𝐴1-1𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) )
31 2 30 syl5bi ( ( 𝐴𝑦𝑦 ∈ On ) → ( 𝐴𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) )
32 31 ex ( 𝐴𝑦 → ( 𝑦 ∈ On → ( 𝐴𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) ) )
33 32 pm2.43b ( 𝑦 ∈ On → ( 𝐴𝑦 → ∃ 𝑥 𝑥 We 𝐴 ) )
34 33 rexlimiv ( ∃ 𝑦 ∈ On 𝐴𝑦 → ∃ 𝑥 𝑥 We 𝐴 )