Metamath Proof Explorer


Theorem afvco2

Description: Value of a function composition, analogous to fvco2 . (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion afvco2 ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺 ''' 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 fvco2 ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺𝑋 ) ) )
2 1 adantl ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( ( 𝐹𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺𝑋 ) ) )
3 simpll ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( 𝐺𝑋 ) ∈ dom 𝐹 )
4 df-fn ( 𝐺 Fn 𝐴 ↔ ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) )
5 simpll ( ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) ∧ 𝑋𝐴 ) → Fun 𝐺 )
6 eleq2 ( 𝐴 = dom 𝐺 → ( 𝑋𝐴𝑋 ∈ dom 𝐺 ) )
7 6 eqcoms ( dom 𝐺 = 𝐴 → ( 𝑋𝐴𝑋 ∈ dom 𝐺 ) )
8 7 biimpd ( dom 𝐺 = 𝐴 → ( 𝑋𝐴𝑋 ∈ dom 𝐺 ) )
9 8 adantl ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) → ( 𝑋𝐴𝑋 ∈ dom 𝐺 ) )
10 9 imp ( ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) ∧ 𝑋𝐴 ) → 𝑋 ∈ dom 𝐺 )
11 5 10 jca ( ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) ∧ 𝑋𝐴 ) → ( Fun 𝐺𝑋 ∈ dom 𝐺 ) )
12 4 11 sylanb ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( Fun 𝐺𝑋 ∈ dom 𝐺 ) )
13 12 adantl ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( Fun 𝐺𝑋 ∈ dom 𝐺 ) )
14 dmfco ( ( Fun 𝐺𝑋 ∈ dom 𝐺 ) → ( 𝑋 ∈ dom ( 𝐹𝐺 ) ↔ ( 𝐺𝑋 ) ∈ dom 𝐹 ) )
15 13 14 syl ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( 𝑋 ∈ dom ( 𝐹𝐺 ) ↔ ( 𝐺𝑋 ) ∈ dom 𝐹 ) )
16 3 15 mpbird ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → 𝑋 ∈ dom ( 𝐹𝐺 ) )
17 funcoressn ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → Fun ( ( 𝐹𝐺 ) ↾ { 𝑋 } ) )
18 df-dfat ( ( 𝐹𝐺 ) defAt 𝑋 ↔ ( 𝑋 ∈ dom ( 𝐹𝐺 ) ∧ Fun ( ( 𝐹𝐺 ) ↾ { 𝑋 } ) ) )
19 afvfundmfveq ( ( 𝐹𝐺 ) defAt 𝑋 → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑋 ) )
20 18 19 sylbir ( ( 𝑋 ∈ dom ( 𝐹𝐺 ) ∧ Fun ( ( 𝐹𝐺 ) ↾ { 𝑋 } ) ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑋 ) )
21 16 17 20 syl2anc ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑋 ) )
22 df-dfat ( 𝐹 defAt ( 𝐺𝑋 ) ↔ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) )
23 afvfundmfveq ( 𝐹 defAt ( 𝐺𝑋 ) → ( 𝐹 ''' ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑋 ) ) )
24 22 23 sylbir ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) → ( 𝐹 ''' ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑋 ) ) )
25 24 adantr ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( 𝐹 ''' ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺𝑋 ) ) )
26 2 21 25 3eqtr4d ( ( ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺𝑋 ) ) )
27 ianor ( ¬ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ↔ ( ¬ ( 𝐺𝑋 ) ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) )
28 14 funfni ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( 𝑋 ∈ dom ( 𝐹𝐺 ) ↔ ( 𝐺𝑋 ) ∈ dom 𝐹 ) )
29 28 bicomd ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐺𝑋 ) ∈ dom 𝐹𝑋 ∈ dom ( 𝐹𝐺 ) ) )
30 29 notbid ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ¬ ( 𝐺𝑋 ) ∈ dom 𝐹 ↔ ¬ 𝑋 ∈ dom ( 𝐹𝐺 ) ) )
31 30 biimpd ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ¬ ( 𝐺𝑋 ) ∈ dom 𝐹 → ¬ 𝑋 ∈ dom ( 𝐹𝐺 ) ) )
32 ndmafv ( ¬ 𝑋 ∈ dom ( 𝐹𝐺 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V )
33 31 32 syl6com ( ¬ ( 𝐺𝑋 ) ∈ dom 𝐹 → ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V ) )
34 funressnfv ( ( ( 𝑋 ∈ dom ( 𝐹𝐺 ) ∧ Fun ( ( 𝐹𝐺 ) ↾ { 𝑋 } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) )
35 34 ex ( ( 𝑋 ∈ dom ( 𝐹𝐺 ) ∧ Fun ( ( 𝐹𝐺 ) ↾ { 𝑋 } ) ) → ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) )
36 afvnfundmuv ( ¬ ( 𝐹𝐺 ) defAt 𝑋 → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V )
37 18 36 sylnbir ( ¬ ( 𝑋 ∈ dom ( 𝐹𝐺 ) ∧ Fun ( ( 𝐹𝐺 ) ↾ { 𝑋 } ) ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V )
38 35 37 nsyl4 ( ¬ ( ( 𝐹𝐺 ) ''' 𝑋 ) = V → ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) )
39 38 com12 ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ¬ ( ( 𝐹𝐺 ) ''' 𝑋 ) = V → Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) )
40 39 con1d ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ¬ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V ) )
41 40 com12 ( ¬ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) → ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V ) )
42 33 41 jaoi ( ( ¬ ( 𝐺𝑋 ) ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) → ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V ) )
43 27 42 sylbi ( ¬ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) → ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V ) )
44 43 imp ( ( ¬ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = V )
45 afvnfundmuv ( ¬ 𝐹 defAt ( 𝐺𝑋 ) → ( 𝐹 ''' ( 𝐺𝑋 ) ) = V )
46 22 45 sylnbir ( ¬ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) → ( 𝐹 ''' ( 𝐺𝑋 ) ) = V )
47 46 eqcomd ( ¬ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) → V = ( 𝐹 ''' ( 𝐺𝑋 ) ) )
48 47 adantr ( ( ¬ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → V = ( 𝐹 ''' ( 𝐺𝑋 ) ) )
49 44 48 eqtrd ( ( ¬ ( ( 𝐺𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴𝑋𝐴 ) ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺𝑋 ) ) )
50 26 49 pm2.61ian ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺𝑋 ) ) )
51 eqidd ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → 𝐹 = 𝐹 )
52 4 9 sylbi ( 𝐺 Fn 𝐴 → ( 𝑋𝐴𝑋 ∈ dom 𝐺 ) )
53 52 imp ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → 𝑋 ∈ dom 𝐺 )
54 fnfun ( 𝐺 Fn 𝐴 → Fun 𝐺 )
55 funres ( Fun 𝐺 → Fun ( 𝐺 ↾ { 𝑋 } ) )
56 54 55 syl ( 𝐺 Fn 𝐴 → Fun ( 𝐺 ↾ { 𝑋 } ) )
57 56 adantr ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → Fun ( 𝐺 ↾ { 𝑋 } ) )
58 df-dfat ( 𝐺 defAt 𝑋 ↔ ( 𝑋 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝑋 } ) ) )
59 afvfundmfveq ( 𝐺 defAt 𝑋 → ( 𝐺 ''' 𝑋 ) = ( 𝐺𝑋 ) )
60 58 59 sylbir ( ( 𝑋 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝑋 } ) ) → ( 𝐺 ''' 𝑋 ) = ( 𝐺𝑋 ) )
61 53 57 60 syl2anc ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( 𝐺 ''' 𝑋 ) = ( 𝐺𝑋 ) )
62 61 eqcomd ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( 𝐺𝑋 ) = ( 𝐺 ''' 𝑋 ) )
63 51 62 afveq12d ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( 𝐹 ''' ( 𝐺𝑋 ) ) = ( 𝐹 ''' ( 𝐺 ''' 𝑋 ) ) )
64 50 63 eqtrd ( ( 𝐺 Fn 𝐴𝑋𝐴 ) → ( ( 𝐹𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺 ''' 𝑋 ) ) )