Metamath Proof Explorer


Theorem assalmod

Description: An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014)

Ref Expression
Assertion assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
2 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
3 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
4 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
5 eqid ( .r𝑊 ) = ( .r𝑊 )
6 1 2 3 4 5 isassa ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ ( Scalar ‘ 𝑊 ) ∈ CRing ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑧 ( ·𝑠𝑊 ) 𝑥 ) ( .r𝑊 ) 𝑦 ) = ( 𝑧 ( ·𝑠𝑊 ) ( 𝑥 ( .r𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r𝑊 ) ( 𝑧 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑧 ( ·𝑠𝑊 ) ( 𝑥 ( .r𝑊 ) 𝑦 ) ) ) ) )
7 6 simplbi ( 𝑊 ∈ AssAlg → ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ ( Scalar ‘ 𝑊 ) ∈ CRing ) )
8 7 simp1d ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )