Metamath Proof Explorer


Theorem atantayl3

Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypothesis atantayl3.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) )
Assertion atantayl3 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 atantayl3.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) )
2 2nn0 2 ∈ ℕ0
3 simpr ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 )
4 nn0mulcl ( ( 2 ∈ ℕ0𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 )
5 2 3 4 sylancr ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 )
6 5 nn0cnd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℂ )
7 ax-1cn 1 ∈ ℂ
8 pncan ( ( ( 2 · 𝑛 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) )
9 6 7 8 sylancl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) )
10 9 oveq1d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) )
11 nn0cn ( 𝑛 ∈ ℕ0𝑛 ∈ ℂ )
12 11 adantl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℂ )
13 2cnd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 2 ∈ ℂ )
14 2ne0 2 ≠ 0
15 14 a1i ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 2 ≠ 0 )
16 12 13 15 divcan3d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 )
17 10 16 eqtr2d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 = ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) )
18 17 oveq2d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) = ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) )
19 18 oveq1d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) )
20 19 mpteq2dva ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) )
21 1 20 syl5eq ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) )
22 21 seqeq3d ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) )
23 eqid ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴𝑘 ) / 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴𝑘 ) / 𝑘 ) ) ) )
24 23 atantayl2 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) )
25 neg1cn - 1 ∈ ℂ
26 expcl ( ( - 1 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ )
27 25 3 26 sylancr ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ )
28 simpll ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ ℂ )
29 peano2nn0 ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 )
30 5 29 syl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 )
31 28 30 expcld ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ )
32 nn0p1nn ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ )
33 5 32 syl ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ )
34 33 nncnd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ )
35 33 nnne0d ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 )
36 31 34 35 divcld ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ )
37 27 36 mulcld ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ )
38 19 37 eqeltrrd ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ )
39 oveq1 ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝑘 − 1 ) = ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) )
40 39 oveq1d ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( 𝑘 − 1 ) / 2 ) = ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) )
41 40 oveq2d ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) = ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) )
42 oveq2 ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝐴𝑘 ) = ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) )
43 id ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → 𝑘 = ( ( 2 · 𝑛 ) + 1 ) )
44 42 43 oveq12d ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( 𝐴𝑘 ) / 𝑘 ) = ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) )
45 41 44 oveq12d ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴𝑘 ) / 𝑘 ) ) = ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) )
46 38 45 iserodd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) )
47 24 46 mpbird ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) )
48 22 47 eqbrtrd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) )