Metamath Proof Explorer


Theorem ax1rid

Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulid1 , based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid . (Contributed by Scott Fenton, 3-Jan-2013) (New usage is discouraged.)

Ref Expression
Assertion ax1rid ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-r ℝ = ( R × { 0R } )
2 oveq1 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( ⟨ 𝑥 , 𝑦 ⟩ · 1 ) = ( 𝐴 · 1 ) )
3 id ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 )
4 2 3 eqeq12d ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( ( ⟨ 𝑥 , 𝑦 ⟩ · 1 ) = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝐴 · 1 ) = 𝐴 ) )
5 elsni ( 𝑦 ∈ { 0R } → 𝑦 = 0R )
6 df-1 1 = ⟨ 1R , 0R
7 6 oveq2i ( ⟨ 𝑥 , 0R ⟩ · 1 ) = ( ⟨ 𝑥 , 0R ⟩ · ⟨ 1R , 0R ⟩ )
8 1sr 1RR
9 mulresr ( ( 𝑥R ∧ 1RR ) → ( ⟨ 𝑥 , 0R ⟩ · ⟨ 1R , 0R ⟩ ) = ⟨ ( 𝑥 ·R 1R ) , 0R ⟩ )
10 8 9 mpan2 ( 𝑥R → ( ⟨ 𝑥 , 0R ⟩ · ⟨ 1R , 0R ⟩ ) = ⟨ ( 𝑥 ·R 1R ) , 0R ⟩ )
11 1idsr ( 𝑥R → ( 𝑥 ·R 1R ) = 𝑥 )
12 11 opeq1d ( 𝑥R → ⟨ ( 𝑥 ·R 1R ) , 0R ⟩ = ⟨ 𝑥 , 0R ⟩ )
13 10 12 eqtrd ( 𝑥R → ( ⟨ 𝑥 , 0R ⟩ · ⟨ 1R , 0R ⟩ ) = ⟨ 𝑥 , 0R ⟩ )
14 7 13 syl5eq ( 𝑥R → ( ⟨ 𝑥 , 0R ⟩ · 1 ) = ⟨ 𝑥 , 0R ⟩ )
15 opeq2 ( 𝑦 = 0R → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 0R ⟩ )
16 15 oveq1d ( 𝑦 = 0R → ( ⟨ 𝑥 , 𝑦 ⟩ · 1 ) = ( ⟨ 𝑥 , 0R ⟩ · 1 ) )
17 16 15 eqeq12d ( 𝑦 = 0R → ( ( ⟨ 𝑥 , 𝑦 ⟩ · 1 ) = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( ⟨ 𝑥 , 0R ⟩ · 1 ) = ⟨ 𝑥 , 0R ⟩ ) )
18 14 17 syl5ibr ( 𝑦 = 0R → ( 𝑥R → ( ⟨ 𝑥 , 𝑦 ⟩ · 1 ) = ⟨ 𝑥 , 𝑦 ⟩ ) )
19 18 impcom ( ( 𝑥R𝑦 = 0R ) → ( ⟨ 𝑥 , 𝑦 ⟩ · 1 ) = ⟨ 𝑥 , 𝑦 ⟩ )
20 5 19 sylan2 ( ( 𝑥R𝑦 ∈ { 0R } ) → ( ⟨ 𝑥 , 𝑦 ⟩ · 1 ) = ⟨ 𝑥 , 𝑦 ⟩ )
21 1 4 20 optocl ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 )