Metamath Proof Explorer


Theorem axpowndlem3

Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Revised by Mario Carneiro, 10-Dec-2016) (Proof shortened by Wolf Lammen, 10-Jun-2019) (New usage is discouraged.)

Ref Expression
Assertion axpowndlem3 ( ¬ 𝑥 = 𝑦 → ∃ 𝑥𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) )

Proof

Step Hyp Ref Expression
1 sp ( ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 )
2 1 con3i ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 )
3 p0ex { ∅ } ∈ V
4 eleq2 ( 𝑥 = { ∅ } → ( 𝑤𝑥𝑤 ∈ { ∅ } ) )
5 4 imbi2d ( 𝑥 = { ∅ } → ( ( 𝑤 = ∅ → 𝑤𝑥 ) ↔ ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) ) )
6 5 albidv ( 𝑥 = { ∅ } → ( ∀ 𝑤 ( 𝑤 = ∅ → 𝑤𝑥 ) ↔ ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) ) )
7 3 6 spcev ( ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) → ∃ 𝑥𝑤 ( 𝑤 = ∅ → 𝑤𝑥 ) )
8 0ex ∅ ∈ V
9 8 snid ∅ ∈ { ∅ }
10 eleq1 ( 𝑤 = ∅ → ( 𝑤 ∈ { ∅ } ↔ ∅ ∈ { ∅ } ) )
11 9 10 mpbiri ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } )
12 7 11 mpg 𝑥𝑤 ( 𝑤 = ∅ → 𝑤𝑥 )
13 neq0 ( ¬ 𝑤 = ∅ ↔ ∃ 𝑥 𝑥𝑤 )
14 13 con1bii ( ¬ ∃ 𝑥 𝑥𝑤𝑤 = ∅ )
15 14 imbi1i ( ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) ↔ ( 𝑤 = ∅ → 𝑤𝑥 ) )
16 15 albii ( ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) ↔ ∀ 𝑤 ( 𝑤 = ∅ → 𝑤𝑥 ) )
17 16 exbii ( ∃ 𝑥𝑤 ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) ↔ ∃ 𝑥𝑤 ( 𝑤 = ∅ → 𝑤𝑥 ) )
18 12 17 mpbir 𝑥𝑤 ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 )
19 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
20 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
21 nfcvf2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑦 𝑥 )
22 nfcvd ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑦 𝑤 )
23 21 22 nfeld ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥𝑤 )
24 19 23 nfexd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦𝑥 𝑥𝑤 )
25 24 nfnd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ¬ ∃ 𝑥 𝑥𝑤 )
26 22 21 nfeld ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤𝑥 )
27 25 26 nfimd ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) )
28 nfeqf2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 = 𝑦 )
29 19 28 nfan1 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑤 = 𝑦 )
30 elequ2 ( 𝑤 = 𝑦 → ( 𝑥𝑤𝑥𝑦 ) )
31 30 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑤 = 𝑦 ) → ( 𝑥𝑤𝑥𝑦 ) )
32 29 31 exbid ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑤 = 𝑦 ) → ( ∃ 𝑥 𝑥𝑤 ↔ ∃ 𝑥 𝑥𝑦 ) )
33 32 notbid ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑤 = 𝑦 ) → ( ¬ ∃ 𝑥 𝑥𝑤 ↔ ¬ ∃ 𝑥 𝑥𝑦 ) )
34 elequ1 ( 𝑤 = 𝑦 → ( 𝑤𝑥𝑦𝑥 ) )
35 34 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑤 = 𝑦 ) → ( 𝑤𝑥𝑦𝑥 ) )
36 33 35 imbi12d ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑤 = 𝑦 ) → ( ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) ↔ ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) ) )
37 36 ex ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ( ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) ↔ ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) ) ) )
38 20 27 37 cbvald ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) ↔ ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) ) )
39 19 38 exbid ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥𝑤 ( ¬ ∃ 𝑥 𝑥𝑤𝑤𝑥 ) ↔ ∃ 𝑥𝑦 ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) ) )
40 18 39 mpbii ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥𝑦 ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) )
41 nfae 𝑥𝑥 𝑥 = 𝑧
42 nfae 𝑦𝑥 𝑥 = 𝑧
43 axc11r ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ¬ 𝑥𝑦 → ∀ 𝑥 ¬ 𝑥𝑦 ) )
44 alnex ( ∀ 𝑧 ¬ 𝑥𝑦 ↔ ¬ ∃ 𝑧 𝑥𝑦 )
45 alnex ( ∀ 𝑥 ¬ 𝑥𝑦 ↔ ¬ ∃ 𝑥 𝑥𝑦 )
46 43 44 45 3imtr3g ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∃ 𝑧 𝑥𝑦 → ¬ ∃ 𝑥 𝑥𝑦 ) )
47 nd3 ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑦 𝑥𝑧 )
48 47 pm2.21d ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 𝑥𝑧 → ¬ ∃ 𝑥 𝑥𝑦 ) )
49 46 48 jad ( ∀ 𝑥 𝑥 = 𝑧 → ( ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → ¬ ∃ 𝑥 𝑥𝑦 ) )
50 49 spsd ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → ¬ ∃ 𝑥 𝑥𝑦 ) )
51 50 imim1d ( ∀ 𝑥 𝑥 = 𝑧 → ( ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) → ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) ) )
52 42 51 alimd ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) → ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) ) )
53 41 52 eximd ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥𝑦 ( ¬ ∃ 𝑥 𝑥𝑦𝑦𝑥 ) → ∃ 𝑥𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) ) )
54 40 53 syl5com ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) ) )
55 axpowndlem2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) ) )
56 54 55 pm2.61d ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) )
57 2 56 syl ( ¬ 𝑥 = 𝑦 → ∃ 𝑥𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥𝑦 → ∀ 𝑦 𝑥𝑧 ) → 𝑦𝑥 ) )