Metamath Proof Explorer


Theorem bcval4

Description: Value of the binomial coefficient, N choose K , outside of its standard domain. Remark in Gleason p. 295. (Contributed by NM, 14-Jul-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion bcval4 ( ( 𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) → ( 𝑁 C 𝐾 ) = 0 )

Proof

Step Hyp Ref Expression
1 elfzle1 ( 𝐾 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝐾 )
2 0re 0 ∈ ℝ
3 elfzelz ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℤ )
4 3 zred ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℝ )
5 lenlt ( ( 0 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ≤ 𝐾 ↔ ¬ 𝐾 < 0 ) )
6 2 4 5 sylancr ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 0 ≤ 𝐾 ↔ ¬ 𝐾 < 0 ) )
7 1 6 mpbid ( 𝐾 ∈ ( 0 ... 𝑁 ) → ¬ 𝐾 < 0 )
8 7 adantl ( ( 𝑁 ∈ ℕ0𝐾 ∈ ( 0 ... 𝑁 ) ) → ¬ 𝐾 < 0 )
9 elfzle2 ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾𝑁 )
10 9 adantl ( ( 𝑁 ∈ ℕ0𝐾 ∈ ( 0 ... 𝑁 ) ) → 𝐾𝑁 )
11 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
12 lenlt ( ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐾𝑁 ↔ ¬ 𝑁 < 𝐾 ) )
13 4 11 12 syl2anr ( ( 𝑁 ∈ ℕ0𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝐾𝑁 ↔ ¬ 𝑁 < 𝐾 ) )
14 10 13 mpbid ( ( 𝑁 ∈ ℕ0𝐾 ∈ ( 0 ... 𝑁 ) ) → ¬ 𝑁 < 𝐾 )
15 ioran ( ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ↔ ( ¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾 ) )
16 8 14 15 sylanbrc ( ( 𝑁 ∈ ℕ0𝐾 ∈ ( 0 ... 𝑁 ) ) → ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) )
17 16 ex ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... 𝑁 ) → ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) )
18 17 adantr ( ( 𝑁 ∈ ℕ0𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( 0 ... 𝑁 ) → ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) )
19 18 con2d ( ( 𝑁 ∈ ℕ0𝐾 ∈ ℤ ) → ( ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) → ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) )
20 19 3impia ( ( 𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) → ¬ 𝐾 ∈ ( 0 ... 𝑁 ) )
21 bcval3 ( ( 𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝐾 ) = 0 )
22 20 21 syld3an3 ( ( 𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) → ( 𝑁 C 𝐾 ) = 0 )