Metamath Proof Explorer


Theorem cats1co

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 𝑇 = ( 𝑆 ++ ⟨“ 𝑋 ”⟩ )
cats1cld.2 ( 𝜑𝑆 ∈ Word 𝐴 )
cats1cld.3 ( 𝜑𝑋𝐴 )
cats1co.4 ( 𝜑𝐹 : 𝐴𝐵 )
cats1co.5 ( 𝜑 → ( 𝐹𝑆 ) = 𝑈 )
cats1co.6 𝑉 = ( 𝑈 ++ ⟨“ ( 𝐹𝑋 ) ”⟩ )
Assertion cats1co ( 𝜑 → ( 𝐹𝑇 ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 cats1cld.1 𝑇 = ( 𝑆 ++ ⟨“ 𝑋 ”⟩ )
2 cats1cld.2 ( 𝜑𝑆 ∈ Word 𝐴 )
3 cats1cld.3 ( 𝜑𝑋𝐴 )
4 cats1co.4 ( 𝜑𝐹 : 𝐴𝐵 )
5 cats1co.5 ( 𝜑 → ( 𝐹𝑆 ) = 𝑈 )
6 cats1co.6 𝑉 = ( 𝑈 ++ ⟨“ ( 𝐹𝑋 ) ”⟩ )
7 3 s1cld ( 𝜑 → ⟨“ 𝑋 ”⟩ ∈ Word 𝐴 )
8 ccatco ( ( 𝑆 ∈ Word 𝐴 ∧ ⟨“ 𝑋 ”⟩ ∈ Word 𝐴𝐹 : 𝐴𝐵 ) → ( 𝐹 ∘ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) ) = ( ( 𝐹𝑆 ) ++ ( 𝐹 ∘ ⟨“ 𝑋 ”⟩ ) ) )
9 2 7 4 8 syl3anc ( 𝜑 → ( 𝐹 ∘ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) ) = ( ( 𝐹𝑆 ) ++ ( 𝐹 ∘ ⟨“ 𝑋 ”⟩ ) ) )
10 s1co ( ( 𝑋𝐴𝐹 : 𝐴𝐵 ) → ( 𝐹 ∘ ⟨“ 𝑋 ”⟩ ) = ⟨“ ( 𝐹𝑋 ) ”⟩ )
11 3 4 10 syl2anc ( 𝜑 → ( 𝐹 ∘ ⟨“ 𝑋 ”⟩ ) = ⟨“ ( 𝐹𝑋 ) ”⟩ )
12 5 11 oveq12d ( 𝜑 → ( ( 𝐹𝑆 ) ++ ( 𝐹 ∘ ⟨“ 𝑋 ”⟩ ) ) = ( 𝑈 ++ ⟨“ ( 𝐹𝑋 ) ”⟩ ) )
13 9 12 eqtrd ( 𝜑 → ( 𝐹 ∘ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) ) = ( 𝑈 ++ ⟨“ ( 𝐹𝑋 ) ”⟩ ) )
14 1 coeq2i ( 𝐹𝑇 ) = ( 𝐹 ∘ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) )
15 13 14 6 3eqtr4g ( 𝜑 → ( 𝐹𝑇 ) = 𝑉 )