Metamath Proof Explorer


Theorem cdleme32fva

Description: Part of proof of Lemma D in Crawley p. 113. Value of F at an atom not under W . (Contributed by NM, 2-Mar-2013)

Ref Expression
Hypotheses cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
cdleme32.l = ( le ‘ 𝐾 )
cdleme32.j = ( join ‘ 𝐾 )
cdleme32.m = ( meet ‘ 𝐾 )
cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdleme32fva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅 / 𝑥 𝑂 = 𝑅 / 𝑠 𝑁 )

Proof

Step Hyp Ref Expression
1 cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme32.l = ( le ‘ 𝐾 )
3 cdleme32.j = ( join ‘ 𝐾 )
4 cdleme32.m = ( meet ‘ 𝐾 )
5 cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
12 cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
13 cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
14 cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
15 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅𝐴 )
16 1 5 atbase ( 𝑅𝐴𝑅𝐵 )
17 15 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅𝐵 )
18 eqid ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
19 13 18 cdleme31so ( 𝑅𝐵 𝑅 / 𝑥 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
20 17 19 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅 / 𝑥 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
21 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
22 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑃𝑄 )
23 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
24 1 2 3 4 5 6 7 8 9 10 11 12 cdleme32snb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ) → 𝑅 / 𝑠 𝑁𝐵 )
25 21 22 23 24 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅 / 𝑠 𝑁𝐵 )
26 nfv 𝑠 ¬ 𝑅 𝑊
27 nfcsb1v 𝑠 𝑅 / 𝑠 𝑁
28 27 nfeq2 𝑠 𝑧 = 𝑅 / 𝑠 𝑁
29 26 28 nfim 𝑠 ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 )
30 breq1 ( 𝑠 = 𝑅 → ( 𝑠 𝑊𝑅 𝑊 ) )
31 30 notbid ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊 ↔ ¬ 𝑅 𝑊 ) )
32 csbeq1a ( 𝑠 = 𝑅𝑁 = 𝑅 / 𝑠 𝑁 )
33 32 eqeq2d ( 𝑠 = 𝑅 → ( 𝑧 = 𝑁𝑧 = 𝑅 / 𝑠 𝑁 ) )
34 31 33 imbi12d ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
35 34 ax-gen 𝑠 ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
36 ceqsralt ( ( Ⅎ 𝑠 ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ∧ ∀ 𝑠 ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) ) ∧ 𝑅𝐴 ) → ( ∀ 𝑠𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
37 29 35 36 mp3an12 ( 𝑅𝐴 → ( ∀ 𝑠𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
38 37 adantr ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) → ( ∀ 𝑠𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
39 38 3ad2ant2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( ∀ 𝑠𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
40 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
41 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
42 2 4 41 5 6 lhpmat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑅 𝑊 ) = ( 0. ‘ 𝐾 ) )
43 40 23 42 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝑅 𝑊 ) = ( 0. ‘ 𝐾 ) )
44 43 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑅 𝑊 ) = ( 0. ‘ 𝐾 ) )
45 44 oveq2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑠 ( 𝑅 𝑊 ) ) = ( 𝑠 ( 0. ‘ 𝐾 ) ) )
46 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝐾 ∈ HL )
47 46 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝐾 ∈ HL )
48 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
49 47 48 syl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝐾 ∈ OL )
50 1 5 atbase ( 𝑠𝐴𝑠𝐵 )
51 50 ad2antrl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝑠𝐵 )
52 1 3 41 olj01 ( ( 𝐾 ∈ OL ∧ 𝑠𝐵 ) → ( 𝑠 ( 0. ‘ 𝐾 ) ) = 𝑠 )
53 49 51 52 syl2anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑠 ( 0. ‘ 𝐾 ) ) = 𝑠 )
54 45 53 eqtrd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑠 )
55 54 eqeq1d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅𝑠 = 𝑅 ) )
56 44 oveq2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑁 ( 𝑅 𝑊 ) ) = ( 𝑁 ( 0. ‘ 𝐾 ) ) )
57 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
58 simpl12 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
59 simpl13 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
60 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) )
61 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝑃𝑄 )
62 1 2 3 4 5 6 7 8 9 10 11 12 cdleme27cl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑃𝑄 ) ) → 𝑁𝐵 )
63 57 58 59 60 61 62 syl122anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝑁𝐵 )
64 1 3 41 olj01 ( ( 𝐾 ∈ OL ∧ 𝑁𝐵 ) → ( 𝑁 ( 0. ‘ 𝐾 ) ) = 𝑁 )
65 49 63 64 syl2anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑁 ( 0. ‘ 𝐾 ) ) = 𝑁 )
66 56 65 eqtrd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑁 ( 𝑅 𝑊 ) ) = 𝑁 )
67 66 eqeq2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ↔ 𝑧 = 𝑁 ) )
68 55 67 imbi12d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( ( ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ( 𝑠 = 𝑅𝑧 = 𝑁 ) ) )
69 68 expr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ 𝑠𝐴 ) → ( ¬ 𝑠 𝑊 → ( ( ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ( 𝑠 = 𝑅𝑧 = 𝑁 ) ) ) )
70 69 pm5.74d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ 𝑠𝐴 ) → ( ( ¬ 𝑠 𝑊 → ( ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) ↔ ( ¬ 𝑠 𝑊 → ( 𝑠 = 𝑅𝑧 = 𝑁 ) ) ) )
71 impexp ( ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ( ¬ 𝑠 𝑊 → ( ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
72 bi2.04 ( ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑠 𝑊 → ( 𝑠 = 𝑅𝑧 = 𝑁 ) ) )
73 70 71 72 3bitr4g ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ 𝑠𝐴 ) → ( ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ) ) )
74 73 ralbidva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ∀ 𝑠𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 𝑊𝑧 = 𝑁 ) ) ) )
75 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ¬ 𝑅 𝑊 )
76 biimt ( ¬ 𝑅 𝑊 → ( 𝑧 = 𝑅 / 𝑠 𝑁 ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
77 75 76 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝑧 = 𝑅 / 𝑠 𝑁 ↔ ( ¬ 𝑅 𝑊𝑧 = 𝑅 / 𝑠 𝑁 ) ) )
78 39 74 77 3bitr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ 𝑧 = 𝑅 / 𝑠 𝑁 ) )
79 78 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) ∧ 𝑧𝐵 ) → ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ 𝑧 = 𝑅 / 𝑠 𝑁 ) )
80 25 79 riota5 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) = 𝑅 / 𝑠 𝑁 )
81 20 80 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅 / 𝑥 𝑂 = 𝑅 / 𝑠 𝑁 )