Metamath Proof Explorer


Theorem cdlemeg46rjgN

Description: NOT NEEDED? TODO FIX COMMENT. r \/ g(s) = r \/ v_2 p. 115 last line. (Contributed by NM, 2-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemef46g.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef46g.l = ( le ‘ 𝐾 )
cdlemef46g.j = ( join ‘ 𝐾 )
cdlemef46g.m = ( meet ‘ 𝐾 )
cdlemef46g.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef46g.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef46g.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemef46g.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs46g.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemef46g.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
cdlemef46.v 𝑉 = ( ( 𝑄 𝑃 ) 𝑊 )
cdlemef46.n 𝑁 = ( ( 𝑣 𝑉 ) ( 𝑃 ( ( 𝑄 𝑣 ) 𝑊 ) ) )
cdlemefs46.o 𝑂 = ( ( 𝑄 𝑃 ) ( 𝑁 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
cdlemef46.g 𝐺 = ( 𝑎𝐵 ↦ if ( ( 𝑄𝑃 ∧ ¬ 𝑎 𝑊 ) , ( 𝑐𝐵𝑢𝐴 ( ( ¬ 𝑢 𝑊 ∧ ( 𝑢 ( 𝑎 𝑊 ) ) = 𝑎 ) → 𝑐 = ( if ( 𝑢 ( 𝑄 𝑃 ) , ( 𝑏𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑄 𝑃 ) ) → 𝑏 = 𝑂 ) ) , 𝑢 / 𝑣 𝑁 ) ( 𝑎 𝑊 ) ) ) ) , 𝑎 ) )
cdlemeg46.y 𝑌 = ( ( 𝑅 ( 𝐺𝑆 ) ) 𝑊 )
Assertion cdlemeg46rjgN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅 ( 𝐺𝑆 ) ) = ( 𝑅 𝑌 ) )

Proof

Step Hyp Ref Expression
1 cdlemef46g.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef46g.l = ( le ‘ 𝐾 )
3 cdlemef46g.j = ( join ‘ 𝐾 )
4 cdlemef46g.m = ( meet ‘ 𝐾 )
5 cdlemef46g.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef46g.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef46g.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemef46g.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs46g.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemef46g.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
11 cdlemef46.v 𝑉 = ( ( 𝑄 𝑃 ) 𝑊 )
12 cdlemef46.n 𝑁 = ( ( 𝑣 𝑉 ) ( 𝑃 ( ( 𝑄 𝑣 ) 𝑊 ) ) )
13 cdlemefs46.o 𝑂 = ( ( 𝑄 𝑃 ) ( 𝑁 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
14 cdlemef46.g 𝐺 = ( 𝑎𝐵 ↦ if ( ( 𝑄𝑃 ∧ ¬ 𝑎 𝑊 ) , ( 𝑐𝐵𝑢𝐴 ( ( ¬ 𝑢 𝑊 ∧ ( 𝑢 ( 𝑎 𝑊 ) ) = 𝑎 ) → 𝑐 = ( if ( 𝑢 ( 𝑄 𝑃 ) , ( 𝑏𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑄 𝑃 ) ) → 𝑏 = 𝑂 ) ) , 𝑢 / 𝑣 𝑁 ) ( 𝑎 𝑊 ) ) ) ) , 𝑎 ) )
15 cdlemeg46.y 𝑌 = ( ( 𝑅 ( 𝐺𝑆 ) ) 𝑊 )
16 eqid ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
17 eqid ( ( 𝑃 𝑄 ) ( ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) ( ( 𝑅 𝑆 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) ( ( 𝑅 𝑆 ) 𝑊 ) ) )
18 eqid ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) = ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) )
19 eqid ( ( 𝑄 𝑃 ) ( ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ( ( ( ( 𝑃 𝑄 ) ( ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) ( ( 𝑅 𝑆 ) 𝑊 ) ) ) 𝑆 ) 𝑊 ) ) ) = ( ( 𝑄 𝑃 ) ( ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ( ( ( ( 𝑃 𝑄 ) ( ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) ( ( 𝑅 𝑆 ) 𝑊 ) ) ) 𝑆 ) 𝑊 ) ) )
20 eqid ( ( ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) 𝑈 ) ( 𝑄 ( ( 𝑃 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) ) ) = ( ( ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) 𝑈 ) ( 𝑄 ( ( 𝑃 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) ) )
21 eqid ( ( ( ( 𝑃 𝑄 ) ( ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) ( ( 𝑅 𝑆 ) 𝑊 ) ) ) 𝑆 ) 𝑊 ) = ( ( ( ( 𝑃 𝑄 ) ( ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) ( ( 𝑅 𝑆 ) 𝑊 ) ) ) 𝑆 ) 𝑊 )
22 eqid ( ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) = ( ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 )
23 1 2 3 4 5 6 7 11 16 17 18 19 20 21 22 cdleme43cN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) = ( 𝑅 ( ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) ) )
24 23 3adant3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) = ( 𝑅 ( ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) ) )
25 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
26 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
27 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
28 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
29 1 2 3 4 5 6 11 12 13 14 cdlemeg47b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → ( 𝐺𝑆 ) = 𝑆 / 𝑣 𝑁 )
30 25 26 27 28 29 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑆 ) = 𝑆 / 𝑣 𝑁 )
31 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝐴 )
32 12 18 cdleme31sc ( 𝑆𝐴 𝑆 / 𝑣 𝑁 = ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) )
33 31 32 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆 / 𝑣 𝑁 = ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) )
34 30 33 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑆 ) = ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) )
35 34 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅 ( 𝐺𝑆 ) ) = ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) )
36 35 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 ( 𝐺𝑆 ) ) 𝑊 ) = ( ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) )
37 15 36 syl5eq ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑌 = ( ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) )
38 37 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑌 ) = ( 𝑅 ( ( 𝑅 ( ( 𝑆 𝑉 ) ( 𝑃 ( ( 𝑄 𝑆 ) 𝑊 ) ) ) ) 𝑊 ) ) )
39 24 35 38 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅 ( 𝐺𝑆 ) ) = ( 𝑅 𝑌 ) )