Metamath Proof Explorer


Theorem cjdiv

Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion cjdiv ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 divcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ )
2 cjcl ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ )
3 1 2 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ )
4 simp2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ )
5 cjcl ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ )
6 4 5 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ 𝐵 ) ∈ ℂ )
7 simp3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 )
8 cjne0 ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 ↔ ( ∗ ‘ 𝐵 ) ≠ 0 ) )
9 4 8 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ≠ 0 ↔ ( ∗ ‘ 𝐵 ) ≠ 0 ) )
10 7 9 mpbid ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ 𝐵 ) ≠ 0 )
11 3 6 10 divcan4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) / ( ∗ ‘ 𝐵 ) ) = ( ∗ ‘ ( 𝐴 / 𝐵 ) ) )
12 cjmul ( ( ( 𝐴 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) )
13 1 4 12 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) )
14 divcan1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 )
15 14 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ∗ ‘ 𝐴 ) )
16 13 15 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) = ( ∗ ‘ 𝐴 ) )
17 16 oveq1d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / 𝐵 ) ) · ( ∗ ‘ 𝐵 ) ) / ( ∗ ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) )
18 11 17 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∗ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) / ( ∗ ‘ 𝐵 ) ) )