Metamath Proof Explorer


Theorem cnvco

Description: Distributive law of converse over class composition. Theorem 26 of Suppes p. 64. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvco ( 𝐴𝐵 ) = ( 𝐵 𝐴 )

Proof

Step Hyp Ref Expression
1 exancom ( ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 𝐴 𝑦𝑥 𝐵 𝑧 ) )
2 vex 𝑥 ∈ V
3 vex 𝑦 ∈ V
4 2 3 brco ( 𝑥 ( 𝐴𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) )
5 vex 𝑧 ∈ V
6 3 5 brcnv ( 𝑦 𝐴 𝑧𝑧 𝐴 𝑦 )
7 5 2 brcnv ( 𝑧 𝐵 𝑥𝑥 𝐵 𝑧 )
8 6 7 anbi12i ( ( 𝑦 𝐴 𝑧𝑧 𝐵 𝑥 ) ↔ ( 𝑧 𝐴 𝑦𝑥 𝐵 𝑧 ) )
9 8 exbii ( ∃ 𝑧 ( 𝑦 𝐴 𝑧𝑧 𝐵 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 𝐴 𝑦𝑥 𝐵 𝑧 ) )
10 1 4 9 3bitr4i ( 𝑥 ( 𝐴𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑦 𝐴 𝑧𝑧 𝐵 𝑥 ) )
11 10 opabbii { ⟨ 𝑦 , 𝑥 ⟩ ∣ 𝑥 ( 𝐴𝐵 ) 𝑦 } = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ∃ 𝑧 ( 𝑦 𝐴 𝑧𝑧 𝐵 𝑥 ) }
12 df-cnv ( 𝐴𝐵 ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ 𝑥 ( 𝐴𝐵 ) 𝑦 }
13 df-co ( 𝐵 𝐴 ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ∃ 𝑧 ( 𝑦 𝐴 𝑧𝑧 𝐵 𝑥 ) }
14 11 12 13 3eqtr4i ( 𝐴𝐵 ) = ( 𝐵 𝐴 )