Metamath Proof Explorer


Theorem cnvf1o

Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014)

Ref Expression
Assertion cnvf1o ( Rel 𝐴 → ( 𝑥𝐴 { 𝑥 } ) : 𝐴1-1-onto 𝐴 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥𝐴 { 𝑥 } ) = ( 𝑥𝐴 { 𝑥 } )
2 snex { 𝑥 } ∈ V
3 2 cnvex { 𝑥 } ∈ V
4 3 uniex { 𝑥 } ∈ V
5 4 a1i ( ( Rel 𝐴𝑥𝐴 ) → { 𝑥 } ∈ V )
6 snex { 𝑦 } ∈ V
7 6 cnvex { 𝑦 } ∈ V
8 7 uniex { 𝑦 } ∈ V
9 8 a1i ( ( Rel 𝐴𝑦 𝐴 ) → { 𝑦 } ∈ V )
10 cnvf1olem ( ( Rel 𝐴 ∧ ( 𝑥𝐴𝑦 = { 𝑥 } ) ) → ( 𝑦 𝐴𝑥 = { 𝑦 } ) )
11 relcnv Rel 𝐴
12 simpr ( ( Rel 𝐴 ∧ ( 𝑦 𝐴𝑥 = { 𝑦 } ) ) → ( 𝑦 𝐴𝑥 = { 𝑦 } ) )
13 cnvf1olem ( ( Rel 𝐴 ∧ ( 𝑦 𝐴𝑥 = { 𝑦 } ) ) → ( 𝑥 𝐴𝑦 = { 𝑥 } ) )
14 11 12 13 sylancr ( ( Rel 𝐴 ∧ ( 𝑦 𝐴𝑥 = { 𝑦 } ) ) → ( 𝑥 𝐴𝑦 = { 𝑥 } ) )
15 dfrel2 ( Rel 𝐴 𝐴 = 𝐴 )
16 eleq2 ( 𝐴 = 𝐴 → ( 𝑥 𝐴𝑥𝐴 ) )
17 15 16 sylbi ( Rel 𝐴 → ( 𝑥 𝐴𝑥𝐴 ) )
18 17 anbi1d ( Rel 𝐴 → ( ( 𝑥 𝐴𝑦 = { 𝑥 } ) ↔ ( 𝑥𝐴𝑦 = { 𝑥 } ) ) )
19 18 adantr ( ( Rel 𝐴 ∧ ( 𝑦 𝐴𝑥 = { 𝑦 } ) ) → ( ( 𝑥 𝐴𝑦 = { 𝑥 } ) ↔ ( 𝑥𝐴𝑦 = { 𝑥 } ) ) )
20 14 19 mpbid ( ( Rel 𝐴 ∧ ( 𝑦 𝐴𝑥 = { 𝑦 } ) ) → ( 𝑥𝐴𝑦 = { 𝑥 } ) )
21 10 20 impbida ( Rel 𝐴 → ( ( 𝑥𝐴𝑦 = { 𝑥 } ) ↔ ( 𝑦 𝐴𝑥 = { 𝑦 } ) ) )
22 1 5 9 21 f1od ( Rel 𝐴 → ( 𝑥𝐴 { 𝑥 } ) : 𝐴1-1-onto 𝐴 )