Metamath Proof Explorer


Theorem cnviin

Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion cnviin ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 relcnv Rel 𝑥𝐴 𝐵
2 relcnv Rel 𝐵
3 df-rel ( Rel 𝐵 𝐵 ⊆ ( V × V ) )
4 2 3 mpbi 𝐵 ⊆ ( V × V )
5 4 rgenw 𝑥𝐴 𝐵 ⊆ ( V × V )
6 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ⊆ ( V × V ) ) → ∃ 𝑥𝐴 𝐵 ⊆ ( V × V ) )
7 5 6 mpan2 ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 𝐵 ⊆ ( V × V ) )
8 iinss ( ∃ 𝑥𝐴 𝐵 ⊆ ( V × V ) → 𝑥𝐴 𝐵 ⊆ ( V × V ) )
9 7 8 syl ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵 ⊆ ( V × V ) )
10 df-rel ( Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ ( V × V ) )
11 9 10 sylibr ( 𝐴 ≠ ∅ → Rel 𝑥𝐴 𝐵 )
12 opex 𝑏 , 𝑎 ⟩ ∈ V
13 eliin ( ⟨ 𝑏 , 𝑎 ⟩ ∈ V → ( ⟨ 𝑏 , 𝑎 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑏 , 𝑎 ⟩ ∈ 𝐵 ) )
14 12 13 ax-mp ( ⟨ 𝑏 , 𝑎 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑏 , 𝑎 ⟩ ∈ 𝐵 )
15 vex 𝑎 ∈ V
16 vex 𝑏 ∈ V
17 15 16 opelcnv ( ⟨ 𝑎 , 𝑏 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨ 𝑏 , 𝑎 ⟩ ∈ 𝑥𝐴 𝐵 )
18 opex 𝑎 , 𝑏 ⟩ ∈ V
19 eliin ( ⟨ 𝑎 , 𝑏 ⟩ ∈ V → ( ⟨ 𝑎 , 𝑏 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑎 , 𝑏 ⟩ ∈ 𝐵 ) )
20 18 19 ax-mp ( ⟨ 𝑎 , 𝑏 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑎 , 𝑏 ⟩ ∈ 𝐵 )
21 15 16 opelcnv ( ⟨ 𝑎 , 𝑏 ⟩ ∈ 𝐵 ↔ ⟨ 𝑏 , 𝑎 ⟩ ∈ 𝐵 )
22 21 ralbii ( ∀ 𝑥𝐴𝑎 , 𝑏 ⟩ ∈ 𝐵 ↔ ∀ 𝑥𝐴𝑏 , 𝑎 ⟩ ∈ 𝐵 )
23 20 22 bitri ( ⟨ 𝑎 , 𝑏 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑏 , 𝑎 ⟩ ∈ 𝐵 )
24 14 17 23 3bitr4i ( ⟨ 𝑎 , 𝑏 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨ 𝑎 , 𝑏 ⟩ ∈ 𝑥𝐴 𝐵 )
25 24 eqrelriv ( ( Rel 𝑥𝐴 𝐵 ∧ Rel 𝑥𝐴 𝐵 ) → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵 )
26 1 11 25 sylancr ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵 )