Metamath Proof Explorer


Theorem compsscnv

Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
Assertion compsscnv 𝐹 = 𝐹

Proof

Step Hyp Ref Expression
1 compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
2 cnvopab { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) }
3 difeq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥 ) = ( 𝐴𝑦 ) )
4 3 cbvmptv ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) ) = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑦 ) )
5 df-mpt ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑦 ) ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) }
6 1 4 5 3eqtri 𝐹 = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) }
7 6 cnveqi 𝐹 = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) }
8 df-mpt ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) }
9 compsscnvlem ( ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) → ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) )
10 compsscnvlem ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) )
11 9 10 impbii ( ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) ↔ ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) )
12 11 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝐴𝑥 ) ) }
13 8 1 12 3eqtr4i 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ 𝒫 𝐴𝑥 = ( 𝐴𝑦 ) ) }
14 2 7 13 3eqtr4i 𝐹 = 𝐹