Metamath Proof Explorer


Theorem cores

Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cores ( ran 𝐵𝐶 → ( ( 𝐴𝐶 ) ∘ 𝐵 ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑧 ∈ V
2 vex 𝑦 ∈ V
3 1 2 brelrn ( 𝑧 𝐵 𝑦𝑦 ∈ ran 𝐵 )
4 ssel ( ran 𝐵𝐶 → ( 𝑦 ∈ ran 𝐵𝑦𝐶 ) )
5 vex 𝑥 ∈ V
6 5 brresi ( 𝑦 ( 𝐴𝐶 ) 𝑥 ↔ ( 𝑦𝐶𝑦 𝐴 𝑥 ) )
7 6 baib ( 𝑦𝐶 → ( 𝑦 ( 𝐴𝐶 ) 𝑥𝑦 𝐴 𝑥 ) )
8 3 4 7 syl56 ( ran 𝐵𝐶 → ( 𝑧 𝐵 𝑦 → ( 𝑦 ( 𝐴𝐶 ) 𝑥𝑦 𝐴 𝑥 ) ) )
9 8 pm5.32d ( ran 𝐵𝐶 → ( ( 𝑧 𝐵 𝑦𝑦 ( 𝐴𝐶 ) 𝑥 ) ↔ ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) ) )
10 9 exbidv ( ran 𝐵𝐶 → ( ∃ 𝑦 ( 𝑧 𝐵 𝑦𝑦 ( 𝐴𝐶 ) 𝑥 ) ↔ ∃ 𝑦 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) ) )
11 10 opabbidv ( ran 𝐵𝐶 → { ⟨ 𝑧 , 𝑥 ⟩ ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦𝑦 ( 𝐴𝐶 ) 𝑥 ) } = { ⟨ 𝑧 , 𝑥 ⟩ ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) } )
12 df-co ( ( 𝐴𝐶 ) ∘ 𝐵 ) = { ⟨ 𝑧 , 𝑥 ⟩ ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦𝑦 ( 𝐴𝐶 ) 𝑥 ) }
13 df-co ( 𝐴𝐵 ) = { ⟨ 𝑧 , 𝑥 ⟩ ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) }
14 11 12 13 3eqtr4g ( ran 𝐵𝐶 → ( ( 𝐴𝐶 ) ∘ 𝐵 ) = ( 𝐴𝐵 ) )