Metamath Proof Explorer


Theorem cplem1

Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)

Ref Expression
Hypotheses cplem1.1 𝐶 = { 𝑦𝐵 ∣ ∀ 𝑧𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) }
cplem1.2 𝐷 = 𝑥𝐴 𝐶
Assertion cplem1 𝑥𝐴 ( 𝐵 ≠ ∅ → ( 𝐵𝐷 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 cplem1.1 𝐶 = { 𝑦𝐵 ∣ ∀ 𝑧𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) }
2 cplem1.2 𝐷 = 𝑥𝐴 𝐶
3 scott0 ( 𝐵 = ∅ ↔ { 𝑦𝐵 ∣ ∀ 𝑧𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ )
4 1 eqeq1i ( 𝐶 = ∅ ↔ { 𝑦𝐵 ∣ ∀ 𝑧𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ )
5 3 4 bitr4i ( 𝐵 = ∅ ↔ 𝐶 = ∅ )
6 5 necon3bii ( 𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅ )
7 n0 ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤𝐶 )
8 6 7 bitri ( 𝐵 ≠ ∅ ↔ ∃ 𝑤 𝑤𝐶 )
9 1 ssrab3 𝐶𝐵
10 9 sseli ( 𝑤𝐶𝑤𝐵 )
11 10 a1i ( 𝑥𝐴 → ( 𝑤𝐶𝑤𝐵 ) )
12 ssiun2 ( 𝑥𝐴𝐶 𝑥𝐴 𝐶 )
13 12 2 sseqtrrdi ( 𝑥𝐴𝐶𝐷 )
14 13 sseld ( 𝑥𝐴 → ( 𝑤𝐶𝑤𝐷 ) )
15 11 14 jcad ( 𝑥𝐴 → ( 𝑤𝐶 → ( 𝑤𝐵𝑤𝐷 ) ) )
16 inelcm ( ( 𝑤𝐵𝑤𝐷 ) → ( 𝐵𝐷 ) ≠ ∅ )
17 15 16 syl6 ( 𝑥𝐴 → ( 𝑤𝐶 → ( 𝐵𝐷 ) ≠ ∅ ) )
18 17 exlimdv ( 𝑥𝐴 → ( ∃ 𝑤 𝑤𝐶 → ( 𝐵𝐷 ) ≠ ∅ ) )
19 8 18 syl5bi ( 𝑥𝐴 → ( 𝐵 ≠ ∅ → ( 𝐵𝐷 ) ≠ ∅ ) )
20 19 rgen 𝑥𝐴 ( 𝐵 ≠ ∅ → ( 𝐵𝐷 ) ≠ ∅ )