Metamath Proof Explorer


Theorem cshweqdifid

Description: If cyclically shifting a word by two positions results in the same word, cyclically shifting the word by the difference of these two positions results in the original word itself. (Contributed by AV, 21-Apr-2018) (Revised by AV, 7-Jun-2018) (Revised by AV, 1-Nov-2018)

Ref Expression
Assertion cshweqdifid ( ( 𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀𝑁 ) ) = 𝑊 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑊 ∈ Word 𝑉𝑊 ∈ Word 𝑉 )
2 1 ancli ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉𝑊 ∈ Word 𝑉 ) )
3 2 anim1i ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 ∈ Word 𝑉𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) )
4 3 3impb ( ( 𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 ∈ Word 𝑉𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) )
5 cshweqdif2 ( ( ( 𝑊 ∈ Word 𝑉𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀𝑁 ) ) = 𝑊 ) )
6 4 5 syl ( ( 𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀𝑁 ) ) = 𝑊 ) )