Metamath Proof Explorer


Theorem curry1

Description: Composition with ` ``' ( 2nd |`( { C } X. _V ) ) turns any binary operation F with a constant first operand into a function G of the second operand only. This transformation is called "currying." (Contributed by NM, 28-Mar-2008) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypothesis curry1.1 𝐺 = ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) )
Assertion curry1 ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → 𝐺 = ( 𝑥𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 curry1.1 𝐺 = ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) )
2 fnfun ( 𝐹 Fn ( 𝐴 × 𝐵 ) → Fun 𝐹 )
3 2ndconst ( 𝐶𝐴 → ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V )
4 dff1o3 ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ↔ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –onto→ V ∧ Fun ( 2nd ↾ ( { 𝐶 } × V ) ) ) )
5 4 simprbi ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V → Fun ( 2nd ↾ ( { 𝐶 } × V ) ) )
6 3 5 syl ( 𝐶𝐴 → Fun ( 2nd ↾ ( { 𝐶 } × V ) ) )
7 funco ( ( Fun 𝐹 ∧ Fun ( 2nd ↾ ( { 𝐶 } × V ) ) ) → Fun ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) )
8 2 6 7 syl2an ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → Fun ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) )
9 dmco dom ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) = ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 )
10 fndm ( 𝐹 Fn ( 𝐴 × 𝐵 ) → dom 𝐹 = ( 𝐴 × 𝐵 ) )
11 10 adantr ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → dom 𝐹 = ( 𝐴 × 𝐵 ) )
12 11 imaeq2d ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) = ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) )
13 imacnvcnv ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) )
14 df-ima ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ran ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) )
15 resres ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) )
16 15 rneqi ran ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) )
17 13 14 16 3eqtri ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) )
18 inxp ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × ( V ∩ 𝐵 ) )
19 incom ( V ∩ 𝐵 ) = ( 𝐵 ∩ V )
20 inv1 ( 𝐵 ∩ V ) = 𝐵
21 19 20 eqtri ( V ∩ 𝐵 ) = 𝐵
22 21 xpeq2i ( ( { 𝐶 } ∩ 𝐴 ) × ( V ∩ 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 )
23 18 22 eqtri ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 )
24 snssi ( 𝐶𝐴 → { 𝐶 } ⊆ 𝐴 )
25 df-ss ( { 𝐶 } ⊆ 𝐴 ↔ ( { 𝐶 } ∩ 𝐴 ) = { 𝐶 } )
26 24 25 sylib ( 𝐶𝐴 → ( { 𝐶 } ∩ 𝐴 ) = { 𝐶 } )
27 26 xpeq1d ( 𝐶𝐴 → ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 ) = ( { 𝐶 } × 𝐵 ) )
28 23 27 syl5eq ( 𝐶𝐴 → ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( { 𝐶 } × 𝐵 ) )
29 28 reseq2d ( 𝐶𝐴 → ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) )
30 29 rneqd ( 𝐶𝐴 → ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) )
31 2ndconst ( 𝐶𝐴 → ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –1-1-onto𝐵 )
32 f1ofo ( ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –1-1-onto𝐵 → ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –onto𝐵 )
33 forn ( ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –onto𝐵 → ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) = 𝐵 )
34 31 32 33 3syl ( 𝐶𝐴 → ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) = 𝐵 )
35 30 34 eqtrd ( 𝐶𝐴 → ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = 𝐵 )
36 17 35 syl5eq ( 𝐶𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = 𝐵 )
37 36 adantl ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = 𝐵 )
38 12 37 eqtrd ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) = 𝐵 )
39 9 38 syl5eq ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → dom ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 )
40 1 fneq1i ( 𝐺 Fn 𝐵 ↔ ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) Fn 𝐵 )
41 df-fn ( ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) Fn 𝐵 ↔ ( Fun ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) ∧ dom ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) )
42 40 41 bitri ( 𝐺 Fn 𝐵 ↔ ( Fun ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) ∧ dom ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) )
43 8 39 42 sylanbrc ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → 𝐺 Fn 𝐵 )
44 dffn5 ( 𝐺 Fn 𝐵𝐺 = ( 𝑥𝐵 ↦ ( 𝐺𝑥 ) ) )
45 43 44 sylib ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → 𝐺 = ( 𝑥𝐵 ↦ ( 𝐺𝑥 ) ) )
46 1 fveq1i ( 𝐺𝑥 ) = ( ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 )
47 dff1o4 ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ↔ ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn ( { 𝐶 } × V ) ∧ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ) )
48 3 47 sylib ( 𝐶𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn ( { 𝐶 } × V ) ∧ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ) )
49 fvco2 ( ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ∧ 𝑥 ∈ V ) → ( ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) )
50 49 elvd ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V → ( ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) )
51 48 50 simpl2im ( 𝐶𝐴 → ( ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) )
52 51 ad2antlr ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) ∧ 𝑥𝐵 ) → ( ( 𝐹 ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) )
53 46 52 syl5eq ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) ∧ 𝑥𝐵 ) → ( 𝐺𝑥 ) = ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) )
54 3 adantr ( ( 𝐶𝐴𝑥𝐵 ) → ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V )
55 snidg ( 𝐶𝐴𝐶 ∈ { 𝐶 } )
56 vex 𝑥 ∈ V
57 opelxp ( ⟨ 𝐶 , 𝑥 ⟩ ∈ ( { 𝐶 } × V ) ↔ ( 𝐶 ∈ { 𝐶 } ∧ 𝑥 ∈ V ) )
58 55 56 57 sylanblrc ( 𝐶𝐴 → ⟨ 𝐶 , 𝑥 ⟩ ∈ ( { 𝐶 } × V ) )
59 58 adantr ( ( 𝐶𝐴𝑥𝐵 ) → ⟨ 𝐶 , 𝑥 ⟩ ∈ ( { 𝐶 } × V ) )
60 54 59 jca ( ( 𝐶𝐴𝑥𝐵 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ∧ ⟨ 𝐶 , 𝑥 ⟩ ∈ ( { 𝐶 } × V ) ) )
61 58 fvresd ( 𝐶𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ ⟨ 𝐶 , 𝑥 ⟩ ) = ( 2nd ‘ ⟨ 𝐶 , 𝑥 ⟩ ) )
62 op2ndg ( ( 𝐶𝐴𝑥 ∈ V ) → ( 2nd ‘ ⟨ 𝐶 , 𝑥 ⟩ ) = 𝑥 )
63 62 elvd ( 𝐶𝐴 → ( 2nd ‘ ⟨ 𝐶 , 𝑥 ⟩ ) = 𝑥 )
64 61 63 eqtrd ( 𝐶𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ ⟨ 𝐶 , 𝑥 ⟩ ) = 𝑥 )
65 64 adantr ( ( 𝐶𝐴𝑥𝐵 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ ⟨ 𝐶 , 𝑥 ⟩ ) = 𝑥 )
66 f1ocnvfv ( ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ∧ ⟨ 𝐶 , 𝑥 ⟩ ∈ ( { 𝐶 } × V ) ) → ( ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ ⟨ 𝐶 , 𝑥 ⟩ ) = 𝑥 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) = ⟨ 𝐶 , 𝑥 ⟩ ) )
67 60 65 66 sylc ( ( 𝐶𝐴𝑥𝐵 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) = ⟨ 𝐶 , 𝑥 ⟩ )
68 67 fveq2d ( ( 𝐶𝐴𝑥𝐵 ) → ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ⟨ 𝐶 , 𝑥 ⟩ ) )
69 68 adantll ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) ∧ 𝑥𝐵 ) → ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ⟨ 𝐶 , 𝑥 ⟩ ) )
70 df-ov ( 𝐶 𝐹 𝑥 ) = ( 𝐹 ‘ ⟨ 𝐶 , 𝑥 ⟩ )
71 69 70 syl6eqr ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) ∧ 𝑥𝐵 ) → ( 𝐹 ‘ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐶 𝐹 𝑥 ) )
72 53 71 eqtrd ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) ∧ 𝑥𝐵 ) → ( 𝐺𝑥 ) = ( 𝐶 𝐹 𝑥 ) )
73 72 mpteq2dva ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → ( 𝑥𝐵 ↦ ( 𝐺𝑥 ) ) = ( 𝑥𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) )
74 45 73 eqtrd ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶𝐴 ) → 𝐺 = ( 𝑥𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) )