Metamath Proof Explorer


Definition df-cau

Description: Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006)

Ref Expression
Assertion df-cau Cau = ( 𝑑 ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccau Cau
1 vd 𝑑
2 cxmet ∞Met
3 2 crn ran ∞Met
4 3 cuni ran ∞Met
5 vf 𝑓
6 1 cv 𝑑
7 6 cdm dom 𝑑
8 7 cdm dom dom 𝑑
9 cpm pm
10 cc
11 8 10 9 co ( dom dom 𝑑pm ℂ )
12 vx 𝑥
13 crp +
14 vj 𝑗
15 cz
16 5 cv 𝑓
17 cuz
18 14 cv 𝑗
19 18 17 cfv ( ℤ𝑗 )
20 16 19 cres ( 𝑓 ↾ ( ℤ𝑗 ) )
21 18 16 cfv ( 𝑓𝑗 )
22 cbl ball
23 6 22 cfv ( ball ‘ 𝑑 )
24 12 cv 𝑥
25 21 24 23 co ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 )
26 19 25 20 wf ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 )
27 26 14 15 wrex 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 )
28 27 12 13 wral 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 )
29 28 5 11 crab { 𝑓 ∈ ( dom dom 𝑑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) }
30 1 4 29 cmpt ( 𝑑 ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } )
31 0 30 wceq Cau = ( 𝑑 ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝑓𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } )