Metamath Proof Explorer


Definition df-clim

Description: Define the limit relation for complex number sequences. See clim for its relational expression. (Contributed by NM, 28-Aug-2005)

Ref Expression
Assertion df-clim ⇝ = { ⟨ 𝑓 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cli
1 vf 𝑓
2 vy 𝑦
3 2 cv 𝑦
4 cc
5 3 4 wcel 𝑦 ∈ ℂ
6 vx 𝑥
7 crp +
8 vj 𝑗
9 cz
10 vk 𝑘
11 cuz
12 8 cv 𝑗
13 12 11 cfv ( ℤ𝑗 )
14 1 cv 𝑓
15 10 cv 𝑘
16 15 14 cfv ( 𝑓𝑘 )
17 16 4 wcel ( 𝑓𝑘 ) ∈ ℂ
18 cabs abs
19 cmin
20 16 3 19 co ( ( 𝑓𝑘 ) − 𝑦 )
21 20 18 cfv ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) )
22 clt <
23 6 cv 𝑥
24 21 23 22 wbr ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥
25 17 24 wa ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 )
26 25 10 13 wral 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 )
27 26 8 9 wrex 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 )
28 27 6 7 wral 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 )
29 5 28 wa ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) )
30 29 1 2 copab { ⟨ 𝑓 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ) }
31 0 30 wceq ⇝ = { ⟨ 𝑓 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝑓𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓𝑘 ) − 𝑦 ) ) < 𝑥 ) ) }