Metamath Proof Explorer


Definition df-enr

Description: Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)

Ref Expression
Assertion df-enr ~R = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cer ~R
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 cnp P
5 4 4 cxp ( P × P )
6 3 5 wcel 𝑥 ∈ ( P × P )
7 2 cv 𝑦
8 7 5 wcel 𝑦 ∈ ( P × P )
9 6 8 wa ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) )
10 vz 𝑧
11 vw 𝑤
12 vv 𝑣
13 vu 𝑢
14 10 cv 𝑧
15 11 cv 𝑤
16 14 15 cop 𝑧 , 𝑤
17 3 16 wceq 𝑥 = ⟨ 𝑧 , 𝑤
18 12 cv 𝑣
19 13 cv 𝑢
20 18 19 cop 𝑣 , 𝑢
21 7 20 wceq 𝑦 = ⟨ 𝑣 , 𝑢
22 17 21 wa ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ )
23 cpp +P
24 14 19 23 co ( 𝑧 +P 𝑢 )
25 15 18 23 co ( 𝑤 +P 𝑣 )
26 24 25 wceq ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 )
27 22 26 wa ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) )
28 27 13 wex 𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) )
29 28 12 wex 𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) )
30 29 11 wex 𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) )
31 30 10 wex 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) )
32 9 31 wa ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) )
33 32 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) }
34 0 33 wceq ~R = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) }