Metamath Proof Explorer


Definition df-gcd

Description: Define the gcd operator. For example, ( -u 6 gcd 9 ) = 3 ( ex-gcd ). For an alternate definition, based on the definition in ApostolNT p. 15, see dfgcd2 . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion df-gcd gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛𝑥𝑛𝑦 ) } , ℝ , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgcd gcd
1 vx 𝑥
2 cz
3 vy 𝑦
4 1 cv 𝑥
5 cc0 0
6 4 5 wceq 𝑥 = 0
7 3 cv 𝑦
8 7 5 wceq 𝑦 = 0
9 6 8 wa ( 𝑥 = 0 ∧ 𝑦 = 0 )
10 vn 𝑛
11 10 cv 𝑛
12 cdvds
13 11 4 12 wbr 𝑛𝑥
14 11 7 12 wbr 𝑛𝑦
15 13 14 wa ( 𝑛𝑥𝑛𝑦 )
16 15 10 2 crab { 𝑛 ∈ ℤ ∣ ( 𝑛𝑥𝑛𝑦 ) }
17 cr
18 clt <
19 16 17 18 csup sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛𝑥𝑛𝑦 ) } , ℝ , < )
20 9 5 19 cif if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛𝑥𝑛𝑦 ) } , ℝ , < ) )
21 1 3 2 2 20 cmpo ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛𝑥𝑛𝑦 ) } , ℝ , < ) ) )
22 0 21 wceq gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛𝑥𝑛𝑦 ) } , ℝ , < ) ) )