Metamath Proof Explorer


Theorem dftr5

Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004)

Ref Expression
Assertion dftr5 ( Tr 𝐴 ↔ ∀ 𝑥𝐴𝑦𝑥 𝑦𝐴 )

Proof

Step Hyp Ref Expression
1 dftr2 ( Tr 𝐴 ↔ ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) )
2 alcom ( ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ∀ 𝑥𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) )
3 impexp ( ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ( 𝑦𝑥 → ( 𝑥𝐴𝑦𝐴 ) ) )
4 3 albii ( ∀ 𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ( 𝑥𝐴𝑦𝐴 ) ) )
5 df-ral ( ∀ 𝑦𝑥 ( 𝑥𝐴𝑦𝐴 ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ( 𝑥𝐴𝑦𝐴 ) ) )
6 4 5 bitr4i ( ∀ 𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ∀ 𝑦𝑥 ( 𝑥𝐴𝑦𝐴 ) )
7 r19.21v ( ∀ 𝑦𝑥 ( 𝑥𝐴𝑦𝐴 ) ↔ ( 𝑥𝐴 → ∀ 𝑦𝑥 𝑦𝐴 ) )
8 6 7 bitri ( ∀ 𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ( 𝑥𝐴 → ∀ 𝑦𝑥 𝑦𝐴 ) )
9 8 albii ( ∀ 𝑥𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝑥 𝑦𝐴 ) )
10 df-ral ( ∀ 𝑥𝐴𝑦𝑥 𝑦𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝑥 𝑦𝐴 ) )
11 9 10 bitr4i ( ∀ 𝑥𝑦 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ∀ 𝑥𝐴𝑦𝑥 𝑦𝐴 )
12 2 11 bitri ( ∀ 𝑦𝑥 ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) ↔ ∀ 𝑥𝐴𝑦𝑥 𝑦𝐴 )
13 1 12 bitri ( Tr 𝐴 ↔ ∀ 𝑥𝐴𝑦𝑥 𝑦𝐴 )