Metamath Proof Explorer


Theorem difsnpss

Description: ( B \ { A } ) is a proper subclass of B if and only if A is a member of B . (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion difsnpss ( 𝐴𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 )

Proof

Step Hyp Ref Expression
1 notnotb ( 𝐴𝐵 ↔ ¬ ¬ 𝐴𝐵 )
2 difss ( 𝐵 ∖ { 𝐴 } ) ⊆ 𝐵
3 2 biantrur ( ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ↔ ( ( 𝐵 ∖ { 𝐴 } ) ⊆ 𝐵 ∧ ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ) )
4 difsnb ( ¬ 𝐴𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) = 𝐵 )
5 4 necon3bbii ( ¬ ¬ 𝐴𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 )
6 df-pss ( ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 ↔ ( ( 𝐵 ∖ { 𝐴 } ) ⊆ 𝐵 ∧ ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ) )
7 3 5 6 3bitr4i ( ¬ ¬ 𝐴𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 )
8 1 7 bitri ( 𝐴𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 )