Metamath Proof Explorer


Theorem divelunit

Description: A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion divelunit ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 elicc01 ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) )
2 df-3an ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ↔ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) )
3 1 2 bitri ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) )
4 1re 1 ∈ ℝ
5 ledivmul ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) )
6 4 5 mp3an2 ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) )
7 6 adantlr ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) )
8 simpll ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ )
9 simprl ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ )
10 gt0ne0 ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 )
11 10 adantl ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 )
12 8 9 11 redivcld ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ )
13 divge0 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) )
14 12 13 jca ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) )
15 14 biantrurd ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) )
16 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
17 16 ad2antrl ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ )
18 17 mulid1d ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐵 · 1 ) = 𝐵 )
19 18 breq2d ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 𝐵 · 1 ) ↔ 𝐴𝐵 ) )
20 7 15 19 3bitr3d ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ↔ 𝐴𝐵 ) )
21 3 20 syl5bb ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ 𝐴𝐵 ) )