Metamath Proof Explorer


Theorem dmtpos

Description: The domain of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion dmtpos ( Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹 )

Proof

Step Hyp Ref Expression
1 0nelxp ¬ ∅ ∈ ( V × V )
2 ssel ( dom 𝐹 ⊆ ( V × V ) → ( ∅ ∈ dom 𝐹 → ∅ ∈ ( V × V ) ) )
3 1 2 mtoi ( dom 𝐹 ⊆ ( V × V ) → ¬ ∅ ∈ dom 𝐹 )
4 df-rel ( Rel dom 𝐹 ↔ dom 𝐹 ⊆ ( V × V ) )
5 reldmtpos ( Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹 )
6 3 4 5 3imtr4i ( Rel dom 𝐹 → Rel dom tpos 𝐹 )
7 relcnv Rel dom 𝐹
8 6 7 jctir ( Rel dom 𝐹 → ( Rel dom tpos 𝐹 ∧ Rel dom 𝐹 ) )
9 vex 𝑧 ∈ V
10 brtpos ( 𝑧 ∈ V → ( ⟨ 𝑥 , 𝑦 ⟩ tpos 𝐹 𝑧 ↔ ⟨ 𝑦 , 𝑥𝐹 𝑧 ) )
11 9 10 mp1i ( Rel dom 𝐹 → ( ⟨ 𝑥 , 𝑦 ⟩ tpos 𝐹 𝑧 ↔ ⟨ 𝑦 , 𝑥𝐹 𝑧 ) )
12 11 exbidv ( Rel dom 𝐹 → ( ∃ 𝑧𝑥 , 𝑦 ⟩ tpos 𝐹 𝑧 ↔ ∃ 𝑧𝑦 , 𝑥𝐹 𝑧 ) )
13 opex 𝑥 , 𝑦 ⟩ ∈ V
14 13 eldm ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom tpos 𝐹 ↔ ∃ 𝑧𝑥 , 𝑦 ⟩ tpos 𝐹 𝑧 )
15 vex 𝑥 ∈ V
16 vex 𝑦 ∈ V
17 15 16 opelcnv ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ dom 𝐹 )
18 opex 𝑦 , 𝑥 ⟩ ∈ V
19 18 eldm ( ⟨ 𝑦 , 𝑥 ⟩ ∈ dom 𝐹 ↔ ∃ 𝑧𝑦 , 𝑥𝐹 𝑧 )
20 17 19 bitri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ↔ ∃ 𝑧𝑦 , 𝑥𝐹 𝑧 )
21 12 14 20 3bitr4g ( Rel dom 𝐹 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom tpos 𝐹 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ) )
22 21 eqrelrdv2 ( ( ( Rel dom tpos 𝐹 ∧ Rel dom 𝐹 ) ∧ Rel dom 𝐹 ) → dom tpos 𝐹 = dom 𝐹 )
23 8 22 mpancom ( Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹 )