Metamath Proof Explorer


Theorem domtriomlem

Description: Lemma for domtriom . (Contributed by Mario Carneiro, 9-Feb-2013)

Ref Expression
Hypotheses domtriomlem.1 𝐴 ∈ V
domtriomlem.2 𝐵 = { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) }
domtriomlem.3 𝐶 = ( 𝑛 ∈ ω ↦ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
Assertion domtriomlem ( ¬ 𝐴 ∈ Fin → ω ≼ 𝐴 )

Proof

Step Hyp Ref Expression
1 domtriomlem.1 𝐴 ∈ V
2 domtriomlem.2 𝐵 = { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) }
3 domtriomlem.3 𝐶 = ( 𝑛 ∈ ω ↦ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
4 1 pwex 𝒫 𝐴 ∈ V
5 simpl ( ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) → 𝑦𝐴 )
6 5 ss2abi { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) } ⊆ { 𝑦𝑦𝐴 }
7 df-pw 𝒫 𝐴 = { 𝑦𝑦𝐴 }
8 6 7 sseqtrri { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) } ⊆ 𝒫 𝐴
9 4 8 ssexi { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) } ∈ V
10 2 9 eqeltri 𝐵 ∈ V
11 omex ω ∈ V
12 11 enref ω ≈ ω
13 10 12 axcc3 𝑏 ( 𝑏 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) )
14 nfv 𝑛 ¬ 𝐴 ∈ Fin
15 nfra1 𝑛𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 )
16 14 15 nfan 𝑛 ( ¬ 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) )
17 nnfi ( 𝑛 ∈ ω → 𝑛 ∈ Fin )
18 pwfi ( 𝑛 ∈ Fin ↔ 𝒫 𝑛 ∈ Fin )
19 17 18 sylib ( 𝑛 ∈ ω → 𝒫 𝑛 ∈ Fin )
20 ficardom ( 𝒫 𝑛 ∈ Fin → ( card ‘ 𝒫 𝑛 ) ∈ ω )
21 isinf ( ¬ 𝐴 ∈ Fin → ∀ 𝑚 ∈ ω ∃ 𝑦 ( 𝑦𝐴𝑦𝑚 ) )
22 breq2 ( 𝑚 = ( card ‘ 𝒫 𝑛 ) → ( 𝑦𝑚𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) )
23 22 anbi2d ( 𝑚 = ( card ‘ 𝒫 𝑛 ) → ( ( 𝑦𝐴𝑦𝑚 ) ↔ ( 𝑦𝐴𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) ) )
24 23 exbidv ( 𝑚 = ( card ‘ 𝒫 𝑛 ) → ( ∃ 𝑦 ( 𝑦𝐴𝑦𝑚 ) ↔ ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) ) )
25 24 rspcv ( ( card ‘ 𝒫 𝑛 ) ∈ ω → ( ∀ 𝑚 ∈ ω ∃ 𝑦 ( 𝑦𝐴𝑦𝑚 ) → ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) ) )
26 21 25 syl5 ( ( card ‘ 𝒫 𝑛 ) ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) ) )
27 19 20 26 3syl ( 𝑛 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) ) )
28 finnum ( 𝒫 𝑛 ∈ Fin → 𝒫 𝑛 ∈ dom card )
29 cardid2 ( 𝒫 𝑛 ∈ dom card → ( card ‘ 𝒫 𝑛 ) ≈ 𝒫 𝑛 )
30 entr ( ( 𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ∧ ( card ‘ 𝒫 𝑛 ) ≈ 𝒫 𝑛 ) → 𝑦 ≈ 𝒫 𝑛 )
31 30 expcom ( ( card ‘ 𝒫 𝑛 ) ≈ 𝒫 𝑛 → ( 𝑦 ≈ ( card ‘ 𝒫 𝑛 ) → 𝑦 ≈ 𝒫 𝑛 ) )
32 19 28 29 31 4syl ( 𝑛 ∈ ω → ( 𝑦 ≈ ( card ‘ 𝒫 𝑛 ) → 𝑦 ≈ 𝒫 𝑛 ) )
33 32 anim2d ( 𝑛 ∈ ω → ( ( 𝑦𝐴𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) → ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) ) )
34 33 eximdv ( 𝑛 ∈ ω → ( ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ ( card ‘ 𝒫 𝑛 ) ) → ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) ) )
35 27 34 syld ( 𝑛 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) ) )
36 2 neeq1i ( 𝐵 ≠ ∅ ↔ { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) } ≠ ∅ )
37 abn0 ( { 𝑦 ∣ ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) } ≠ ∅ ↔ ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) )
38 36 37 bitri ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) )
39 35 38 syl6ibr ( 𝑛 ∈ ω → ( ¬ 𝐴 ∈ Fin → 𝐵 ≠ ∅ ) )
40 39 com12 ( ¬ 𝐴 ∈ Fin → ( 𝑛 ∈ ω → 𝐵 ≠ ∅ ) )
41 40 adantr ( ( ¬ 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) → ( 𝑛 ∈ ω → 𝐵 ≠ ∅ ) )
42 rsp ( ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) → ( 𝑛 ∈ ω → ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) )
43 42 adantl ( ( ¬ 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) → ( 𝑛 ∈ ω → ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) )
44 41 43 mpdd ( ( ¬ 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) → ( 𝑛 ∈ ω → ( 𝑏𝑛 ) ∈ 𝐵 ) )
45 16 44 ralrimi ( ( ¬ 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) → ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 )
46 45 3adant2 ( ( ¬ 𝐴 ∈ Fin ∧ 𝑏 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) → ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 )
47 46 3expib ( ¬ 𝐴 ∈ Fin → ( ( 𝑏 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) → ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ) )
48 47 eximdv ( ¬ 𝐴 ∈ Fin → ( ∃ 𝑏 ( 𝑏 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝐵 ≠ ∅ → ( 𝑏𝑛 ) ∈ 𝐵 ) ) → ∃ 𝑏𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ) )
49 13 48 mpi ( ¬ 𝐴 ∈ Fin → ∃ 𝑏𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 )
50 axcc2 𝑐 ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) )
51 simp2 ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → 𝑐 Fn ω )
52 nfra1 𝑛𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵
53 nfra1 𝑛𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) )
54 52 53 nfan 𝑛 ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) )
55 fvex ( 𝑏𝑛 ) ∈ V
56 sseq1 ( 𝑦 = ( 𝑏𝑛 ) → ( 𝑦𝐴 ↔ ( 𝑏𝑛 ) ⊆ 𝐴 ) )
57 breq1 ( 𝑦 = ( 𝑏𝑛 ) → ( 𝑦 ≈ 𝒫 𝑛 ↔ ( 𝑏𝑛 ) ≈ 𝒫 𝑛 ) )
58 56 57 anbi12d ( 𝑦 = ( 𝑏𝑛 ) → ( ( 𝑦𝐴𝑦 ≈ 𝒫 𝑛 ) ↔ ( ( 𝑏𝑛 ) ⊆ 𝐴 ∧ ( 𝑏𝑛 ) ≈ 𝒫 𝑛 ) ) )
59 55 58 2 elab2 ( ( 𝑏𝑛 ) ∈ 𝐵 ↔ ( ( 𝑏𝑛 ) ⊆ 𝐴 ∧ ( 𝑏𝑛 ) ≈ 𝒫 𝑛 ) )
60 59 simprbi ( ( 𝑏𝑛 ) ∈ 𝐵 → ( 𝑏𝑛 ) ≈ 𝒫 𝑛 )
61 60 ralimi ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ≈ 𝒫 𝑛 )
62 fveq2 ( 𝑛 = 𝑘 → ( 𝑏𝑛 ) = ( 𝑏𝑘 ) )
63 pweq ( 𝑛 = 𝑘 → 𝒫 𝑛 = 𝒫 𝑘 )
64 62 63 breq12d ( 𝑛 = 𝑘 → ( ( 𝑏𝑛 ) ≈ 𝒫 𝑛 ↔ ( 𝑏𝑘 ) ≈ 𝒫 𝑘 ) )
65 64 cbvralvw ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ≈ 𝒫 𝑛 ↔ ∀ 𝑘 ∈ ω ( 𝑏𝑘 ) ≈ 𝒫 𝑘 )
66 peano2 ( 𝑛 ∈ ω → suc 𝑛 ∈ ω )
67 omelon ω ∈ On
68 67 onelssi ( suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω )
69 ssralv ( suc 𝑛 ⊆ ω → ( ∀ 𝑘 ∈ ω ( 𝑏𝑘 ) ≈ 𝒫 𝑘 → ∀ 𝑘 ∈ suc 𝑛 ( 𝑏𝑘 ) ≈ 𝒫 𝑘 ) )
70 66 68 69 3syl ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ ω ( 𝑏𝑘 ) ≈ 𝒫 𝑘 → ∀ 𝑘 ∈ suc 𝑛 ( 𝑏𝑘 ) ≈ 𝒫 𝑘 ) )
71 pwsdompw ( ( 𝑛 ∈ ω ∧ ∀ 𝑘 ∈ suc 𝑛 ( 𝑏𝑘 ) ≈ 𝒫 𝑘 ) → 𝑘𝑛 ( 𝑏𝑘 ) ≺ ( 𝑏𝑛 ) )
72 71 ex ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝑏𝑘 ) ≈ 𝒫 𝑘 𝑘𝑛 ( 𝑏𝑘 ) ≺ ( 𝑏𝑛 ) ) )
73 70 72 syld ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ ω ( 𝑏𝑘 ) ≈ 𝒫 𝑘 𝑘𝑛 ( 𝑏𝑘 ) ≺ ( 𝑏𝑛 ) ) )
74 sdomdif ( 𝑘𝑛 ( 𝑏𝑘 ) ≺ ( 𝑏𝑛 ) → ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ≠ ∅ )
75 73 74 syl6 ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ ω ( 𝑏𝑘 ) ≈ 𝒫 𝑘 → ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ≠ ∅ ) )
76 65 75 syl5bi ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ≈ 𝒫 𝑛 → ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ≠ ∅ ) )
77 55 difexi ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ∈ V
78 3 fvmpt2 ( ( 𝑛 ∈ ω ∧ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ∈ V ) → ( 𝐶𝑛 ) = ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
79 77 78 mpan2 ( 𝑛 ∈ ω → ( 𝐶𝑛 ) = ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
80 79 neeq1d ( 𝑛 ∈ ω → ( ( 𝐶𝑛 ) ≠ ∅ ↔ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ≠ ∅ ) )
81 76 80 sylibrd ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ≈ 𝒫 𝑛 → ( 𝐶𝑛 ) ≠ ∅ ) )
82 61 81 syl5com ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( 𝑛 ∈ ω → ( 𝐶𝑛 ) ≠ ∅ ) )
83 82 adantr ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ( 𝑛 ∈ ω → ( 𝐶𝑛 ) ≠ ∅ ) )
84 rsp ( ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑛 ∈ ω → ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) )
85 84 adantl ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ( 𝑛 ∈ ω → ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) )
86 83 85 mpdd ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ( 𝑛 ∈ ω → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) )
87 54 86 ralrimi ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) )
88 87 3adant2 ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) )
89 51 88 jca ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) )
90 89 3expib ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) )
91 90 eximdv ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( ∃ 𝑐 ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐶𝑛 ) ≠ ∅ → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) → ∃ 𝑐 ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) ) )
92 50 91 mpi ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ∃ 𝑐 ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) )
93 simp2 ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → 𝑐 Fn ω )
94 nfra1 𝑛𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 )
95 52 94 nfan 𝑛 ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) )
96 rsp ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑛 ∈ ω → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) )
97 96 com12 ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) )
98 rsp ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( 𝑛 ∈ ω → ( 𝑏𝑛 ) ∈ 𝐵 ) )
99 98 com12 ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( 𝑏𝑛 ) ∈ 𝐵 ) )
100 79 eleq2d ( 𝑛 ∈ ω → ( ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ↔ ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ) )
101 eldifi ( ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) → ( 𝑐𝑛 ) ∈ ( 𝑏𝑛 ) )
102 100 101 syl6bi ( 𝑛 ∈ ω → ( ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑛 ) ∈ ( 𝑏𝑛 ) ) )
103 59 simplbi ( ( 𝑏𝑛 ) ∈ 𝐵 → ( 𝑏𝑛 ) ⊆ 𝐴 )
104 103 sseld ( ( 𝑏𝑛 ) ∈ 𝐵 → ( ( 𝑐𝑛 ) ∈ ( 𝑏𝑛 ) → ( 𝑐𝑛 ) ∈ 𝐴 ) )
105 102 104 syl9 ( 𝑛 ∈ ω → ( ( 𝑏𝑛 ) ∈ 𝐵 → ( ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑛 ) ∈ 𝐴 ) ) )
106 99 105 syld ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑛 ) ∈ 𝐴 ) ) )
107 106 com23 ( 𝑛 ∈ ω → ( ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( 𝑐𝑛 ) ∈ 𝐴 ) ) )
108 97 107 syld ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( 𝑐𝑛 ) ∈ 𝐴 ) ) )
109 108 com13 ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑛 ∈ ω → ( 𝑐𝑛 ) ∈ 𝐴 ) ) )
110 109 imp ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑛 ∈ ω → ( 𝑐𝑛 ) ∈ 𝐴 ) )
111 95 110 ralrimi ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ 𝐴 )
112 111 3adant2 ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ 𝐴 )
113 ffnfv ( 𝑐 : ω ⟶ 𝐴 ↔ ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ 𝐴 ) )
114 93 112 113 sylanbrc ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → 𝑐 : ω ⟶ 𝐴 )
115 nfv 𝑛 𝑘 ∈ ω
116 nnord ( 𝑘 ∈ ω → Ord 𝑘 )
117 nnord ( 𝑛 ∈ ω → Ord 𝑛 )
118 ordtri3or ( ( Ord 𝑘 ∧ Ord 𝑛 ) → ( 𝑘𝑛𝑘 = 𝑛𝑛𝑘 ) )
119 116 117 118 syl2an ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑘𝑛𝑘 = 𝑛𝑛𝑘 ) )
120 fveq2 ( 𝑛 = 𝑘 → ( 𝑐𝑛 ) = ( 𝑐𝑘 ) )
121 fveq2 ( 𝑘 = 𝑗 → ( 𝑏𝑘 ) = ( 𝑏𝑗 ) )
122 121 cbviunv 𝑘𝑛 ( 𝑏𝑘 ) = 𝑗𝑛 ( 𝑏𝑗 )
123 iuneq1 ( 𝑛 = 𝑘 𝑗𝑛 ( 𝑏𝑗 ) = 𝑗𝑘 ( 𝑏𝑗 ) )
124 122 123 syl5eq ( 𝑛 = 𝑘 𝑘𝑛 ( 𝑏𝑘 ) = 𝑗𝑘 ( 𝑏𝑗 ) )
125 62 124 difeq12d ( 𝑛 = 𝑘 → ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) = ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) )
126 120 125 eleq12d ( 𝑛 = 𝑘 → ( ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ↔ ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) ) )
127 126 rspccv ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) → ( 𝑘 ∈ ω → ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) ) )
128 96 100 mpbidi ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑛 ∈ ω → ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ) )
129 94 128 ralrimi ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
130 127 129 syl11 ( 𝑘 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) ) )
131 130 3ad2ant1 ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) ) )
132 eldifi ( ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) → ( 𝑐𝑘 ) ∈ ( 𝑏𝑘 ) )
133 eleq1 ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → ( ( 𝑐𝑘 ) ∈ ( 𝑏𝑘 ) ↔ ( 𝑐𝑛 ) ∈ ( 𝑏𝑘 ) ) )
134 132 133 syl5ib ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → ( ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) → ( 𝑐𝑛 ) ∈ ( 𝑏𝑘 ) ) )
135 134 3ad2ant3 ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) → ( 𝑐𝑛 ) ∈ ( 𝑏𝑘 ) ) )
136 131 135 syld ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑛 ) ∈ ( 𝑏𝑘 ) ) )
137 136 imp ( ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑐𝑛 ) ∈ ( 𝑏𝑘 ) )
138 ssiun2 ( 𝑘𝑛 → ( 𝑏𝑘 ) ⊆ 𝑘𝑛 ( 𝑏𝑘 ) )
139 138 sseld ( 𝑘𝑛 → ( ( 𝑐𝑛 ) ∈ ( 𝑏𝑘 ) → ( 𝑐𝑛 ) ∈ 𝑘𝑛 ( 𝑏𝑘 ) ) )
140 137 139 syl5 ( 𝑘𝑛 → ( ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑐𝑛 ) ∈ 𝑘𝑛 ( 𝑏𝑘 ) ) )
141 140 3impib ( ( 𝑘𝑛 ∧ ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑐𝑛 ) ∈ 𝑘𝑛 ( 𝑏𝑘 ) )
142 128 com12 ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ) )
143 142 3ad2ant2 ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) ) )
144 143 imp ( ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) )
145 144 eldifbd ( ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ¬ ( 𝑐𝑛 ) ∈ 𝑘𝑛 ( 𝑏𝑘 ) )
146 145 3adant1 ( ( 𝑘𝑛 ∧ ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ¬ ( 𝑐𝑛 ) ∈ 𝑘𝑛 ( 𝑏𝑘 ) )
147 141 146 pm2.21dd ( ( 𝑘𝑛 ∧ ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → 𝑘 = 𝑛 )
148 147 3exp ( 𝑘𝑛 → ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → 𝑘 = 𝑛 ) ) )
149 2a1 ( 𝑘 = 𝑛 → ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → 𝑘 = 𝑛 ) ) )
150 fveq2 ( 𝑗 = 𝑛 → ( 𝑏𝑗 ) = ( 𝑏𝑛 ) )
151 150 ssiun2s ( 𝑛𝑘 → ( 𝑏𝑛 ) ⊆ 𝑗𝑘 ( 𝑏𝑗 ) )
152 151 sseld ( 𝑛𝑘 → ( ( 𝑐𝑛 ) ∈ ( 𝑏𝑛 ) → ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) ) )
153 101 152 syl5 ( 𝑛𝑘 → ( ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑛 ) ∖ 𝑘𝑛 ( 𝑏𝑘 ) ) → ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) ) )
154 144 153 syl5 ( 𝑛𝑘 → ( ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) ) )
155 154 3impib ( ( 𝑛𝑘 ∧ ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) )
156 eleq1 ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → ( ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) ↔ ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) ) )
157 eldifn ( ( 𝑐𝑛 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) → ¬ ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) )
158 156 157 syl6bi ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → ( ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) → ¬ ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) ) )
159 158 3ad2ant3 ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ( 𝑐𝑘 ) ∈ ( ( 𝑏𝑘 ) ∖ 𝑗𝑘 ( 𝑏𝑗 ) ) → ¬ ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) ) )
160 131 159 syld ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ¬ ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) ) )
161 160 a1i ( 𝑛𝑘 → ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ¬ ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) ) ) )
162 161 3imp ( ( 𝑛𝑘 ∧ ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ¬ ( 𝑐𝑛 ) ∈ 𝑗𝑘 ( 𝑏𝑗 ) )
163 155 162 pm2.21dd ( ( 𝑛𝑘 ∧ ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → 𝑘 = 𝑛 )
164 163 3exp ( 𝑛𝑘 → ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → 𝑘 = 𝑛 ) ) )
165 148 149 164 3jaoi ( ( 𝑘𝑛𝑘 = 𝑛𝑛𝑘 ) → ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → 𝑘 = 𝑛 ) ) )
166 165 com12 ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ∧ ( 𝑐𝑘 ) = ( 𝑐𝑛 ) ) → ( ( 𝑘𝑛𝑘 = 𝑛𝑛𝑘 ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → 𝑘 = 𝑛 ) ) )
167 166 3expia ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ) → ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → ( ( 𝑘𝑛𝑘 = 𝑛𝑛𝑘 ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → 𝑘 = 𝑛 ) ) ) )
168 119 167 mpid ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ) → ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → 𝑘 = 𝑛 ) ) )
169 168 com3r ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( ( 𝑘 ∈ ω ∧ 𝑛 ∈ ω ) → ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → 𝑘 = 𝑛 ) ) )
170 169 expd ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑘 ∈ ω → ( 𝑛 ∈ ω → ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → 𝑘 = 𝑛 ) ) ) )
171 94 115 170 ralrimd ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ( 𝑘 ∈ ω → ∀ 𝑛 ∈ ω ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → 𝑘 = 𝑛 ) ) )
172 171 ralrimiv ( ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) → ∀ 𝑘 ∈ ω ∀ 𝑛 ∈ ω ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → 𝑘 = 𝑛 ) )
173 172 3ad2ant3 ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ∀ 𝑘 ∈ ω ∀ 𝑛 ∈ ω ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → 𝑘 = 𝑛 ) )
174 dff13 ( 𝑐 : ω –1-1𝐴 ↔ ( 𝑐 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ∀ 𝑛 ∈ ω ( ( 𝑐𝑘 ) = ( 𝑐𝑛 ) → 𝑘 = 𝑛 ) ) )
175 114 173 174 sylanbrc ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → 𝑐 : ω –1-1𝐴 )
176 175 19.8ad ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ∃ 𝑐 𝑐 : ω –1-1𝐴 )
177 1 brdom ( ω ≼ 𝐴 ↔ ∃ 𝑐 𝑐 : ω –1-1𝐴 )
178 176 177 sylibr ( ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ω ≼ 𝐴 )
179 178 3expib ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ω ≼ 𝐴 ) )
180 179 exlimdv ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ( ∃ 𝑐 ( 𝑐 Fn ω ∧ ∀ 𝑛 ∈ ω ( 𝑐𝑛 ) ∈ ( 𝐶𝑛 ) ) → ω ≼ 𝐴 ) )
181 92 180 mpd ( ∀ 𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ω ≼ 𝐴 )
182 181 exlimiv ( ∃ 𝑏𝑛 ∈ ω ( 𝑏𝑛 ) ∈ 𝐵 → ω ≼ 𝐴 )
183 49 182 syl ( ¬ 𝐴 ∈ Fin → ω ≼ 𝐴 )