Metamath Proof Explorer


Theorem elioo4g

Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elioo4g ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶𝐶 < 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eliooxr ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) )
2 elioore ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → 𝐶 ∈ ℝ )
3 1 2 jca ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) )
4 df-3an ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) )
5 3 4 sylibr ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) )
6 eliooord ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐶𝐶 < 𝐵 ) )
7 5 6 jca ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶𝐶 < 𝐵 ) ) )
8 rexr ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* )
9 8 3anim3i ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )
10 9 anim1i ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶𝐶 < 𝐵 ) ) → ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶𝐶 < 𝐵 ) ) )
11 elioo3g ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶𝐶 < 𝐵 ) ) )
12 10 11 sylibr ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶𝐶 < 𝐵 ) ) → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) )
13 7 12 impbii ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶𝐶 < 𝐵 ) ) )