Metamath Proof Explorer


Theorem elnp

Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion elnp ( 𝐴P ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴P𝐴 ∈ V )
2 pssss ( 𝐴Q𝐴Q )
3 nqex Q ∈ V
4 3 ssex ( 𝐴Q𝐴 ∈ V )
5 2 4 syl ( 𝐴Q𝐴 ∈ V )
6 5 ad2antlr ( ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) → 𝐴 ∈ V )
7 psseq2 ( 𝑧 = 𝐴 → ( ∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴 ) )
8 psseq1 ( 𝑧 = 𝐴 → ( 𝑧Q𝐴Q ) )
9 7 8 anbi12d ( 𝑧 = 𝐴 → ( ( ∅ ⊊ 𝑧𝑧Q ) ↔ ( ∅ ⊊ 𝐴𝐴Q ) ) )
10 eleq2 ( 𝑧 = 𝐴 → ( 𝑦𝑧𝑦𝐴 ) )
11 10 imbi2d ( 𝑧 = 𝐴 → ( ( 𝑦 <Q 𝑥𝑦𝑧 ) ↔ ( 𝑦 <Q 𝑥𝑦𝐴 ) ) )
12 11 albidv ( 𝑧 = 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ↔ ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ) )
13 rexeq ( 𝑧 = 𝐴 → ( ∃ 𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) )
14 12 13 anbi12d ( 𝑧 = 𝐴 → ( ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )
15 14 raleqbi1dv ( 𝑧 = 𝐴 → ( ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ↔ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )
16 9 15 anbi12d ( 𝑧 = 𝐴 → ( ( ( ∅ ⊊ 𝑧𝑧Q ) ∧ ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
17 df-np P = { 𝑧 ∣ ( ( ∅ ⊊ 𝑧𝑧Q ) ∧ ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) }
18 16 17 elab2g ( 𝐴 ∈ V → ( 𝐴P ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
19 1 6 18 pm5.21nii ( 𝐴P ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )