Metamath Proof Explorer


Theorem exsnrex

Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018)

Ref Expression
Assertion exsnrex ( ∃ 𝑥 𝑀 = { 𝑥 } ↔ ∃ 𝑥𝑀 𝑀 = { 𝑥 } )

Proof

Step Hyp Ref Expression
1 vsnid 𝑥 ∈ { 𝑥 }
2 eleq2 ( 𝑀 = { 𝑥 } → ( 𝑥𝑀𝑥 ∈ { 𝑥 } ) )
3 1 2 mpbiri ( 𝑀 = { 𝑥 } → 𝑥𝑀 )
4 3 pm4.71ri ( 𝑀 = { 𝑥 } ↔ ( 𝑥𝑀𝑀 = { 𝑥 } ) )
5 4 exbii ( ∃ 𝑥 𝑀 = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥𝑀𝑀 = { 𝑥 } ) )
6 df-rex ( ∃ 𝑥𝑀 𝑀 = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥𝑀𝑀 = { 𝑥 } ) )
7 5 6 bitr4i ( ∃ 𝑥 𝑀 = { 𝑥 } ↔ ∃ 𝑥𝑀 𝑀 = { 𝑥 } )